

EECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE HICH-DENINITION TV

GERNSBACK

The battle for acceptance heats up

BUILD AN CTIVE ANTENNA

b improve the prormance of our shortwave eceiver

IRCUTT 200KB00K

 ractical circuits ut downcounters o work
BUILD A 10-MHZ REQUENCY COUNTER

t's really traceable to the
Tational Bureau of Standards!

Dompuranoigest

look at the Atari ST

\$2.25 U.S.
\$2.75 CAN

$\begin{aligned} & \text { \$2.25 U.S. } \\ & \text { \$2.75 CAN } \end{aligned}$	PLUS:
	*Hardware Hacker
	* Video News
	* Shortwave Radio
	*Avdio Update

Introducing a whole new way to look at oscilloscopes.

Operation that's instinctively, unbelievably clear. Information that's detailed, yet free of errors. And intelligence that will speed your work. Philips' micro-computer controlled medium-frequency Smart Series. They could change forever the way you look at oscilloscopes.

HIGH PERFORMANCE WITH A VIEW

- LCD window. Large digital indications note all selected functions, instrument settings and parameter values. Instantly. Precisely. With no mistakes. And right where you need them - next to the CRT. Not hidden in crowded frontpanels. Not wasting critical waveform display area. It's a revolutionary idea that facilitates the use of an oscilloscope like nothing else. And it's only from Philips. Once again.
- 16KV CRT. Higher acceleration voltage and advanced electron optics assure brilliance and spot quality that outshines anything else in this class.
- Pushbutton simplicity. Quick, one-function buttons have replaced knobs for faster, surer, more reliable operation.
- Instant-action AUTOSET. Philips' intelligent beamfinder automatically selects channel, amplitude, timebase and triggering for error-free display of any input signal. Great for troubleshooting!
- "Clever" cursors and delayed sweep. Standard on the PM 3070, "clever" cursors supply immediate amplitude and timing measurements with direct CRT readout. And an exclusive cursor-operated ZOOM function offers the most efficient use of delayed sweep available in analog scopes.
- Auto-Triggering intelligence. Provides fast, stable triggering up to 150 MHz .
- Probefactor compensation in LCD. It automatically adjusts all readouts for the probe you're using.
- IEEE compatibility. For fast computer hookup and automated production test and calibration.
- Choice of four models: Single and dual timebase; 60 or 100 MHz bandwidths.

SUPPORTING VIEW

Philips' medium-frequency instruments come with a 3 -year warranty, a 30 -day money-back guarantee and all the tech.
nical and service assistance you need. From Fluke-the people who believe that extraordinary technology deseves extraordinary support.
POINT OF VIEW
Call Fluke today at $\mathbf{8 0 0 - 4 4 - F L U K E}$
ext. 77. And find out how easy it is to change the way you look at oscilloscopes.

Ask for your free copy of our new guidebook, Basic Principles of Oscilloscopes.

John Fluke Mig. Co., inc., P.O. Box C9090, MIS 250C,
Everett. WA 98206 Everett. WA 98206
J.S.: 206-356-5400 CANADA: 416-890-7600 OTHER COUNTRIES: 206-356.5500
© Copyright 1988 John Fluke Milo. Co., Inc
All rights reserved. Ad No. 0481-P3065/70

SMART SEBEE OSCCLLOSCOPES • ©O \& DOM MHz

February 1989 lletronices

Vol. 60 No. 2

BUIMI THIS

44 PHONLINK II

Control your home appliances from any touch-tone phone.
Janet McNabb and Gene Roseth

51 ACTIVE ANTENNA

Get good short-wave reception, even where there's no room for a long-wire antenna.
Rodney A. Kreuter
55 CARRIER CURRENT RECEIVER
An AM or FM receiver completes the carrier-current audio system. William Sheets and Rudolf F. Graf

$6310-\mathrm{MHz}$ FREQUENCY STANDARD

Use WWV to calibrate test equipment economically. AI Palmer

THGINOLOCY

35 HIGH-DEFINITION TV

A look at the major contenders in HDTV.
Len Feldman

CHicults

71 DOWN-COUNTER COOKBOOK

Recipes for pre-setable down-counter circuits.
Ray Marston

Drpalarimits

6 VIDEO NEWS

What's new in this fastchanging field.
David Lachenbruch
22 EQUIPMENT REPORTS
Canon's FAX-L920 Laser
Facsimile and
American Reliance's
AR-6400P Cable Tester.
78 HARDWARE HACKER
HDTV: An alternate viewpoint. Don Lancaster

87 SHORTWAVE RADIO
Sunrise and sunset affect propagation.
Stanley Leinwoll
89 AUDIO UPDATE
The question of reliability. Larry Klein
91 ANTIQUE RADIO
Loudspeakers and things. Richard D. Fitch

INTEL's 80386
Dipping decper

PAGE 95

PAGE 51

AN MORF

132 Advertising and Sales Offices

132 Advertising Index
12 Ask R-E
133 Free Information Card
14 Letters
112 Market Center
26 New Products
108 PC Service
4 What's News

(1) THIP COH:

The technology exists for highdefinition TV; in fact, you could say that too much technology exists. Before HDTV can become a viewing reality, a consensus mustbe reached on one HDTV standard. There are currently close to 20 separate proposals vying for that position. Some are fully-compatible with NTSC standard and will display a picture on a conventional television. Other systems are "semi-compatible," requiring extra bandwidth for HDTV broadcasts; still others are completely incompatible with NTSC television. We take a look at all three categories, explain their pros and cons, and introduce you to the major contenders in the HDTV ring, beginning on page 35 .

COVING NixF MONH:

THE MARCH ISSUE IS ON SALE FEBRUARY

LASER POWER SUPPLIES

Buid a universal power supply for Helium-Neon Tubes.

SERVICING VCR's

Advanced oscilloscope features, including auto setup, cursors, and onscreen readout, simplify the repair of VCR's and camcorders-and some basic maintenance and common-sense solutions will help you keep your VCR out of the repair shop.

Computervigest

How to use an Amiga computer for video production.

[^0]Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief, emeritus

Larry Steckler, EHF, CEI editor-in-chief and publisher
EDITORIAL DEPARTMENT
Art Kieiman, editorial director
Brian C. Fenton, editor
Carl Laron, WB2SLR, editorial associate

Marc Spiwak, associate editor
Jonathan A. Gordon, assistant technical editor
Teri Scaduto, assistant editor
Jeffrey K. Holtzman, computer editor
Robert A. Young, assistant editor
Byron G. Wels, editorial associate
Jack Darr, CET, service editor
Robert F. Scott, semiconductoreditor
Herb Friedman, communications editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch, contributing editor
Don Lancaster, contributing editor
Richard D. Fitch, contributing editor
Kathy Campbell, editorial assistant
Andre Duzant, technical illustrator
Injae Lee, assistant illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Robert A. W. Lowndes, editorial production
Karen Tucker, advertising production
Marcella Amoroso, production traffic
CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro, circulation director
Wendy Alanko, circulation analyst
Theresa Lombardo, circulation assistant

Typography by Mates Graphics
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 132.

Surplus HP Gear-up to 90% off!!!

Now you can afford a

Here's the story-

These units were recently installed in a chain of stores for point-of-sale inventory control until a corporate decision to change accounting methods prematurely retired them.
It's a shame. But we lucked out to get them at a truly low price. This corporate mistake is your opportunity however, you must act fast.
Used, yes-but believe me, this industrial-grade equipment is in excellent, near-new conditionperfect operating shape-and every unit comes with our 30-day guarantee. If your unit fails to operate properly in any way whatsoever, well replace it FREE.
This liquidation means you can have that IL Disc Drive or ThinkJet that you've wanted, and that fullmemory HP-75 to experiment with-these units are really affordable! But do not delay-we must limit these fantastic savings to stock on hand. Let us know right away that you want one.

31/2" Disc Drive-

this is the current model (HP-9114B), and it comes with everything: rechargeable batteries, recharger, disc, HP-IL cable, manual.
It is HP-IL driven, so
 you can use it with the the HP-75D and also with the HP-41, HP-71 or HP-110. Easily portable, it weighs only 6 lb , is battery powered, $3^{\prime \prime}$ high and its footprint is the size of typewriter paper. 2 -sided flexible discs hold 630 K , and the drive automatically montors wear and checks for defects at each use. Data access time is $1 / 2 \mathrm{sec}$ and transfer rate is $6 \mathrm{~K} / \mathrm{sec}$. List price new is $\$ 695$, so you buy this used unit at a whopping 57% discount!
Stock \# 9114BU [Used 31/2" Disc Drive]

IL ThinkJet Printer-

this is the current productimon model (HP-2225B) that is so popular.
It prints 80 columns and is HP-IL driven, so you can use it with the HP-75D and also with the HP-41, HP-71 or HP-110. Completely portable, it weighs only $51 / 2 \mathrm{lb}$ and it's battery operted. Yet it's so quiet and so robust that you see it as a public-access printer in many libraries, and it has a life of 100,000 pages! It's fast, 150 characters per second. and has high quality print with an 11×12 dot matrix (bidirectional, logic-seeking, 1 K buffer, and it does underlining or boldface in 1 pass). There's no ribbon-you simply replace the printhead for $\$ 11$.
List price new is $\$ 495$, so you can have fast, quiet IL printing now at this giant 60% discount! Stock \#2225BU [Used Think Jet Printer]. $\$ 195$
 a modem, barcode decoders, and a huge 64 K RAM disc full of super-fast memory, plus the Barcode Wand! That's a lot, so I'll display the list here for you (remember, you are getting the whole package)-

$$
\begin{aligned}
& \text { 1. (HP-75D) Portable Computer } \\
& \text { 2. (H P-82700) 8K RAM Memory Module } \\
& \text { 3. (HP-82718B) Expansion Pod } \\
& \text { 4. (H P-92267B) Barcode Wand }
\end{aligned}
$$

HP-75D is $5 \times 10 \times 1 \frac{1}{4}$ inches, 26 oz , with 16 K RAM built in. It has a card reader, wand interface and port, touch-type keyboard (the keyboards on these units have never been used). Comes with manual, battery pack and adapter/recharger, IL cables.
Expansion Pod fits as a cradle on your 75, has 300 baud, direct-connect modem and decoders for 3 of 9 Code and Code 11.
Barcode Wand is medium resolution (0.19 mm min width of narrow element) for code produced on dotmatrix printers.
The total list price for this gear new is \$2715-so your cost is discounted an unbelievable 90% !!!
Stock \#HP-75DU [Used Computer Package].
\$275
Who is EduCALC? In 12 years we have become one of the largest HP dealers in the world. You see, we guarantee you'll be completely satisfied with your purchase, or your money back!
Order by mail: Californians add 6\% tax. Add $\$ 4$ for UPS delivery (no extra charge for multiple items). Allow 12 days for personal checks to clear, or send your MC/Visa number and card address.
For fastest service, call during west-coast business hours at (714)582-2637. Or for all days/ all hours call toll-free (800)633-2252, ext. 357. with your MC or VISA card. Of course, if you live in Southern California, drop by in person and pick up your new HP gear.
I guarantee you'll be delighted-or your money back within 15 days, no questions asked.

EduCALC Mail Store-Dept. 57 27953 Cabot Road
Laguna Niguel, CA 92677

What's News

Longer CD recordings with new blue laser

Matsushita scientists report the development of industry's first ul-tra-compact blue laser, using a unique technology that combines a second harmonic generation element and a semiconductor-diode laser. The device will permit higher recording density for informa-tion-memory devices, as well as potential size reductions for dataprocessing equipment-such as laser-color printers and projection TV's-that are currently equipped with large gas lasers.

Low recording density has been a critical problem in compact-disc and optical-memory equipment. Increased recording density requires a shorter wavelength for the beam that writes to or reads from optical-memory discs. Present equipment uses a semiconductor laser with a wavelength of about 780-840 nanometers. By using the ultra-compact blue laser, with a wavelength of $390-420 \mathrm{~nm}$, an optical disc's memory can be quadrupled. (That shorter wave-length-one-half as long-cuts the size of an optical disc's pits by 50 percent.)
To achieve the lightest and most

Microbial batteries seem a possibility

Fuel cells-those in which the electrolyte is continuously being used up and replaced-are well known. Unfortunately, fuel cells have their own difficulties; one is that most of them have to operate at high temperatures.
It has been known almost from organisms such as bacteria can generate a voltage or produce a current. As the organisms break down (or catabolize) the large molecules in their food, they produce intermediate substances that are rich in electrons. The problem

THE PANASONIC ULTRA-COMPACT blue laser device will quadruple the memory of optical discs.
compact equipment, Matsushita has combined an infrared semiconductor laser and the new second harmonic generator in a single module, thus obtaining a blue-laser output of 420 nm from an infrared laser operating at 840 nm . Beam power is 1 milliwatt.

Samples of the new laser-to be marketed under the Panasonic name-should be available by the time you read this.
is that the organisms have a "skin" of liquid membranes and cell walls that block passage of the electrons. Currents from experimental cells have been low.

Now scientists from Kings College in London report a class of chemicals that "connect" the elec-tron-rich interior of the cell to the negative terminal. Those "mediators" are chemicals-such as resorutin, thionin, and others-that are well known to biochemists. In effect, they penetrate the outer layer of the microorganism and make it possible for the electrons to get through.

Experimental bacterial cells fed
with various sugars have been made with outputs as high as 2 amperes, and researchers are already talking of running cars with sugar in their tanks. At the other end of the scale, there is much interest in cells that would deliver milliwatts or even microwatts of power. (Less than one tenth of a gram of carbohydrate would power a watch for a year.) Another possible application is power from an abundant, inexpensive agricultural or industrial waste, such as sugar cane.

New editing technology harmonizes tape and film

Video-program producers have long wished to be able to shoot on film, edit on video tape, and release prints in both media, including a matching sound track for each. But film and videotape are incompatible-film operates at 24 frames per second, and videotape operates at 30 -so that dream has always been thought of as being impossible.

Now engineers from CMX Corp., a leading designer of computerized film- and television-editing systems, have solved that problem with a revolutionary new patented software technique that is called MC ${ }^{2}$ (Matched Computer Cut). $M C^{2}$ works within the CMX 6000 editing system that transfers film or videotape to laser videodiscs for editing purposes. With MC^{2}, editors are now able to prepare a film cut and a videotape master-including the audio portion for each of them-and they have them both "frame accurate" at 24 frames and 30 frames per second.
MC^{2} also solves an international problem. Many foreign standards for video, such as PAL and SECAM, differ from the American NTSC. MC^{2} can be used as an easy alternative to create high-quality PAL or SECAM masters from standard NTSC tapes.

HITACHI SCOPES AT DISCOUNT PRICES

\square
 V-212 \$399

List \$560 Save \$161

20MHz Dual Trace Oscilloscope

All Hitachi scopes include probes, schematics and Hitachi's 3 year guaranty on parts and labor. Many accessories available for all scopes.

- DC to 100 MHz - Dual Channel - Delayed Sweep - CRT Readout - Sweep Time - Autoranging - Trigger Lock - 2 mV Sensitivity

ELENCO PRODUCTS AT DISCOUNT PRICES

20MHz Dual Trace Oscilloscope

 \$359 M0-1251- $6^{\prime \prime}$ CRT
- Built in
component tester
- TV Sync

X-Y Operation

FREE DMMwith purchase ofMO-1251/1252 Scope	
SCOPE PROBES	

35 MHz Dual Trace Good to 50 MHz

\$495
MO-1252

- High luminance $6^{\prime \prime}$ CRT
- 1 mV Sensitivity
- 6KV Acceleration Voltage - 10ns Rise Time
- X-Y Operation - Z Axis
- Delayed Triggering Sweep

Top quality scopes at a very reasonable price. Contains all desired features. Two 1x, 10x probes, diagrams and manual. Two year guarantee,

M-5000 S45	True RMS 41/2 Digit Multimeter $\mathbf{S 1 3 5} \quad$ M-7000			Multimeter with Capacitance and Transistor Tester \$55 CM-1500 Reads Volts, Ohms, Current, Capacitors, Transistors and Diodes with case				
ST-265 $\$ 22$ O-1000A AC Works with most DMM		$\$ 17$		$\int_{\$ 23}^{L P-700}$			Breadboards $\begin{aligned} & 9430 \\ & \mathbf{1 , 1 0 0} \text { pins } \mathbf{\$ 1 5} \\ & 9434 \\ & \text { 2,170 pins } \$ \mathbf{\$ 5} \\ & 9436 \\ & \text { 2,860 pins } \$ 35 \\ & \text { All have color } \\ & \text { coded posts } \end{aligned}$	
Wide Band Signa SG-9500 with and 150 MHz	Generators SG-9000 \$129 Freq $100 \mathrm{~K}-450 \mathrm{MHz}$ Modulation of 1 KHz ariable RF output Digital Display built-in Freq Ctr $\$ 249$	Convenient one hand operation with batteriesand case				Func	s sine,tri,squ wave	Decade Blox $=060$ or 9620 $\$ 18.95$ \#9610 Resistor Blox 47 ohm to 1 M \& 100 K pot \#9620 Capacitor Blox 47 pf to 10MFD
Digital Triple Power Fully Regulated, Short circu 2 Limit Cont., 3 Separate su XP-660 with Analog Me	$\$ 249$ $0-20 \mathrm{~V}$ at 1 A $0-20 \mathrm{~V}$ at 1 A 5 V at 5 A cted with $\$ 175$					10MHz XT 100\% IBM ${ }^{\text {® }}$ 5 Year Warranty		
Four-Function Frequ - Fioboa000: Frequency, Period, Totaliz Self Check with High Sta Oscillator, 8 digit LED dis	$\begin{gathered} \text { F-1000 } 1.2 \mathrm{aH} \\ \$ 259 \\ \mathrm{~F}-100120 \mathrm{MH} \\ \$ 179 \end{gathered}$ ized Crystal Oven ay	GF-80	GF-8016 \square 15 without	Function Genera with Freq. Coun \$239 Sine, Square, Triang Pulse, Ramp, 2 to 2 Freq Counter . 1 - 10 Freq. Meter \$179			MHz Motherboard ansion Slots Compressor Slots Floppy Drive Syle Keyboard EE spreadsheet 3MS DOS and	-150W Power Supply -256K RAM Expandable to 640 K - Monochrome Monitor - Monographic Video Card - Parellel Printer Port and word processor GW Basic add $\$ 75$
WE WILL NOT BE UNDERSOLD! UPS Shipping: US 5\% (\$10 Max) IL Res., 7\% Tax \square		C \& S SALES INC. 1245 Rosewood, Deerfield, IL 60015 (800) 292-7711 (312) 541-0710				15 Day Money Back Guarantee 2 Year Warranty WRITE FOR FRED CATALOG		

Video

 News- An HDTV tube. Just as semiconductor manufacturers are pushing for government grants or consortiums to lay the foundations for a "new consumer-electronics industry" in the United States, the last surviving major Americanowned television manufacturer is pushing for government aid to keep it afloat. Zenith Electronics has asked for a grant (believed to be in the neighborhood of $\$ 60,000,000$) to develop its unique Flat Tension Mask (FTM) tube as a high-definition, giant-screen picture tube. Zenith says that FTM is ideally suited for HDTV and can be made cheaply after further development. (FTM tubes currently are being made in the 14 -inch size for data display only.) The FTM differs from conventional tubes in that its faceplate is completely flat-it can be made of conventional window glass-and the shadow mask is stretched just behind the faceplate and bonded into the glass, preventing any significant change in its contours as the tube heats up.

The display on the FTM tube is unique. Because there need be virtually no reflection, the picture looks more like a 35 mm slide than a TV image. However, Zenith has had difficulty manufacturing the tube, and some members of the industry doubt that it can ever be produced economically.

While Zenith pleads for government aid in developing its tube into a consumer device, it is also seeking either to sell its consumerelectronics operation or enter into some kind of joint venture-developments that may have occurred by the time you read this. Zenith's problems and those of the semiconductor manufacturers, however, still underline the problems of the low-profit consumer-electronics industry.

- Greating an industry. Some of the semiconductor and related Silicon Valley manufacturers now pushing for a bailout to "revive the American consumer-electronics industry" were formerly engaged in the manufacture of TV sets and other consumerelectronic products, and left the industry
voluntarily or sold out to Japanese manufacturers. They are now seeking government money to get back into a field they once quit because the profits were too low. However, those same manufacturers point out that the lack of a consumer-electronics industry as a major consumer of chips could imperil American defense.

A major campaign is on. Although there is a score of TV-assembly plants in the United States, the vast majority are foreign-owned, and many depend on imported parts and subassembly. The question is whether the supply of consumerelectronics products will continue to be the province of overseas manufacturers as the world enters the age of high-definition TV.

- HDTV in spotlight. High-definition television is getting increasing attention in Washington and elsewhere, as the public imagination is captured by the concept of a TV picture that looks like a movie, both in width of screen and in detail. Semiconductor manufacturers are urging the U.S. government to finance a major program to develop "a new consumer-electronics industry" as a stimulus to the development and sale of IC's. They claim that only 6% of the semiconductors used in consumerelectronics products sold in this country are made in the United States, and they insist that HDTV provides a good opportunity for the development of a new American consumerelectronics industry.

In the background is an FCC directive to American broadcasters that any new HDTV system be compatible with existing NTSC transmissions and channels. That virtually rules out the Japanese $1,125-$ line HDTV system that actually is designed for direct broadcasting from satellites and not for terrestrial-TV transmission. (In fact, the first Japanese HDTV transmissions will be to receivers in public places rather than in consumers' homes.) The FCC's compatibility ruling has cleared the air and helps to quell the rumors that the Japanese will export an incompatible system here with no opposition.

Intermittents. We Hear You.

Introducing The Heavy-Duty DMM With An Audible
 Readout That Lets You Keep Both Eyes On The Job.

Abstract

Intelligent design and solid construction make the new HD 150 Series the best DMMs in their class.

They're the latest in a distinguished line that began when Beckman Industrial pioneered heavy-duty DMMs with their distinctive yellow color. Many competitors have since imitated that color. As for imitating their performance, no one comes close.

The HD 150 Series attains new levels of excellence with a range of advanced features. They're waterproof. Drop proof.

$A=A \sim \cap$

 frequency increases or decreases,
accordingly Use it for volts, amps, or ohms. It's ideal for peaking and nulling, too

Built tough to work hard. The HD 150 Series DMMs are so tightly sealed against water and grime that they're guaranteed for five years against contamination. And, because they're built so tough, they're guaranteed for two years against any damage (except abuse). Crashes, overloads, moisture, dust... you name it. The HD 150 Series can handle it all!
Listening is believing. For a hands-on demo, see your distributor now. Learn why the HD 150 Series is the soundest DMM value you'll see. Or hear.

Key Specifications

	HD 151	HD 152	HD 153
Auto-ranging	\checkmark	\checkmark	\checkmark
Range Lock		\checkmark	\checkmark
Audible readout			\checkmark
Tilt Stand and Skyhook TM	Optional	Optional	Included
Logic pulse detector			\checkmark
DC voltage accuracy	0.7%	0.5%	0.25%
10A range		\checkmark	\checkmark
Suggested list price	$\$ 149.00$	$\$ 169.00$	$\$ 199.00$

Auto-ranging. Slim-styled for onehand comfort and convenience. With auto-off to prolong battery life. Plus 2 fuses, PTC resistor and MOV for unsurpassed overload protection.
Audible readout. A "sound" reason to go with the HD 150 Series. With this unique feature on the HD 153, you measure parameters by listening to a continuous variable tone. As the parameter you measure rises or falls, the tone's

Intermittent alert. A key application of audible readout. The HD 153 pinpoints intermittents by emitting a "crackling" sound when they're detected. The response sounds in about 1 msec -far faster than the information appears on any DMM display.
\qquad far

$$
\square
$$

 Logic function. The HD 153 detects TTL or CMOS logic pulses using standard test leads.

Easy to use. The HD 150 Series lets you read the LCD even at
wide angles.
With the large rotary dial you select functions with one-hande (right or left) convenience. Autoranging speeds you to the right range. A tilt-stand and Skyhook let you set or hang the DMM almost anywhere.

Beckman Industrial

Beckman Industrial Corporation
Instrumentation Products Division
A Subsidiary of Emerson Electric Company
3883 Ruffin Road, San Diego, California 92123-1898
(619) $495-3200$ • FAX: (619) $268-0172$ • TLX: 249031

Digital scopes with a

Give up real-time capability for storage? Not with Tek!

That's because analog capability is integral to low-cost Tek digital storage oscilloscopes. So you need only one instrument to make all your measurements efficiently. With no trade-offs.

It's another Tek advantage: analog and digital in one familiar, affordable package.

Single-shot events. Elusive glitches.
Low-speed phenomena.

Four screen photos spliced end to end illustrate the benefit of full four-screen capture using the 2230 's $4 K$
record length. record length. -

Any waveform can be viewed for as long as you like. Or stored in 4K of memory for later analysis or comparison to other waveforms. And if there's a question about a digital measurement, just push a button for real-time display analysis.

real-time advantage.

The affordable portables.
These are the world's best-selling digital storage oscilloscopes. And with the new 20 MHz Tek 2201 joining the family, there's now an even better selection-in bandwidth, performance and price.

Select for advanced features such as 100 ns glitch capture at any sweep speed, CRT readout, measurement cursors, multiple acquisition modes and hardcopy output, plus optional GPIB or RS-232-C interfaces and software.

These scopes are perfect for first-time digital users. And seasoned operators will appreciate even more their versatility, convenience and value. All backed

Ask R-E

WRITE TO:

ASK R-E

Radio-Electronics
500-B Bi-County Blvd.
Farmingdale, NY 11735

TIME-BASE CORRECTOR

Can you explain exactly what a "time-base corrector" does? I want to be able to mix two video sources together, and I'd like to know if I need one of those to do it. Also, what other equipment do I need to do video mixing?-S. V., Okinawa, Japan

In order to understand what the time-base corrector does, you first have to understand what the timebase corrector corrects. The drawing in Fig. 1 is a typical line of video. The horizontal sync on the line is what makes the beam zip back to the left edge of the picture and start a new line of video. Although you only see what occurs on the line during the picture portion of the line, Fig. 1 should make it clear that there's a lot of other stuff going on during the blanking interval as well-behind the scene, so to speak.

When you record on a VCR, all the control signals (including sync) have to be recorded as well-that's obvious; but what's not obvious is that they're not recorded as part of the picture. The circuitry in the VCR separates the sync from the picture and records it all on a separate track called, appropriately enough, the control track.

When you play back a tape, things like bobble, misalignment, and jitter, often cause the control track to be read either a bit early or a bit late. All VCR's suffer from that to some degree, even high-quality professional ones. There's just no way to avoid it, since the VCR is only a mechanical device and mechanical devices are built with mechanical tolerances.

FIG. 1

Even if you managed to get a VCR in super-duper alignment, so that there was no jitter on the drum to misalign the control and video tracks, it wouldn't be long before normal mechanical wear caused it to fall out of alignment.

Now that we've seen what causes the problem, we can start talking about a time-base corrector. Since the picture's horizontal jitter is caused by timing errors in synchronizing the control and video tracks, they can be eliminated by synchronizing the video to a sync source that's independent of the recorded sync.

A time-base corrector takes the incoming video signal, strips sync from it, and remixes it with a new set of sync signals. The video is processed line by line, and the original sync is just used as a trigger to mark the correct position on the line for injecting the new sync. The actual circuitry that does the job can be designed several ways.

You can have something similar to the auto-triggering circuitry found on an oscilloscope, or it can use a phase-locked loop to lock the old and new sync together.
You don't need a separate timebase corrector to mix several video sources together because most consumer video mixers will separate sync signals from video and inject new control signals on the output of the mixer anyway. It's possible to build your own video mixer, but even a basic mixer needs fairly complex circuitry.
If your interest is primarily in electronic design, designing one of those would be an interesting thing to do. If, on the other hand, you're more interested in having one to use, you'll probably find it a more efficient use of your time to go out and buy one.

DIGITAL METERS

I've built the digital oil-temperature gauge, temperature gauge,
and voltmeter that appeared in the July, August, and September 1983 Radio-Electronics, and I'm looking for some other ones. Do you know of any other digital meters I could build?-S. Salisbury, Omaha, NB

If you've already built the three gauges you've mentioned, you've also already built all the gauges that you need. That isn't meant as any sort of editorial judgment on the place of digital electronics in cars; it just means that you've already got all the circuitry you need to build as many digital gauges as you can fit between the driver's door and the cigarette lighter. If you look at the block diagram in Fig. 2, you'll see what I mean.

FIG. 2
Most digital gauges either count pulses per time unit or measure a standard electrical unit (usually volts). An electronic tachometer is an example of the former, and your digital voltmeter is an example of the latter. If you think of the meter as a sealed unit, there's a big difference between a digital temperature gauge and a digital oilpressure gauge, but if you look at the illustration, you'll realize that the two meters are more alike than they are different.

The difference between the two gauges is only in the sensor and
the conditioning circuitry. Both meters are actually measuring the same electrical parameter. To make the point clearer, let's suppose that you wanted to make a digital fuel-flow meter. That could come in handy because it would be calibrated and gated to show fuel economy. In any event, the design of a meter like that would revolve mostly around the device that you were using to measure fuel flow, and not on the meter that was measuring it.

The first place you would begin looking as you built up the design is in a catalog of rotary transducers, as they are good for measuring fuel flow. The deal here is that the most important part of the meter is the device that gives you something to measure. In this example, the rotary transducer would produce a voltage proportional to the fuel flow. Once you've got that signal available, you can measure it with the digital voltmeter that you built.

BEST PRICES!
 © 800-TLSIR-123
 (800-874-7123)

Used Test Equipment, Too! Over 3,000 Models Available At Huge Discounts With Warranties! Freight and taxes extra. Immediate availability of equipment.

Multimeters Beckman	Scopes Hitachi	Power Sources
300 \$101	V-222 \$570	Power Designs
310 \$122	V-422 \$734	2020B $\$ 808$
320 \$150	V-425 \$859	1570A \$1515
350 \$198	V-1100A \$2070	2K20A \$1040
360 \$250	V-660 \$1076	4050D \$765
4410 \$206	V-665 \$1345	5015D \$508
HD100 \$146	V-1065 \$1706	6150D \$765
HD110 \$172	V-509 \$1266	TW347D \$812
\$22		TW5005D \$594
	Hitachi	TW6050D \$1021
	V-1060 \$143	
		Power Designs
Fluke	$\xrightarrow{\text { Iwatsu }}$	TP340A \$725
23-YEL \$134	DS-6121A \$4975	
25-YEL $\quad \$ 167$	SC-340 $\$ 1360$ SS-5321 $\$ 3800$	
$37 \quad \$ 209$	$\begin{array}{lr} \text { SS-5321 } & \$ 3800 \\ \text { SS-5702 } & \$ 508 \end{array}$	LCR Meters
73 \$	SS-6611 \$1863	Wayne Kerr
75 \$ $\$ 100$	SS-5712 \$2885	4225 \$1806
77 \$134		4210 \$2497
8010A \$276		
8020B $\quad \$ 218$	Iwatsu	Counters
8050A $\quad \$ 360$	DS-6121 \$3975	
8060A \$327	Thermometer	1900A \$459
Fluke 27-yEL or 27-STD \$219		1910A $\$ 616$
	Fluke-52 \$142	1911A $\$ 756$
	Handheld	1912A \$832

[^1]
LETTERS

NOT QUITE TRUE RMS

It has come to our attention that there are a couple of errors in the schematic diagram (Fig. 2) for the article "True RMS Converter for your DMM," that appeared in the December 1988 issue of Radio-Electronics. Neither pin 4 of IC1 nor the anode of D2 should be connected to ground, as the schematic indicates. Instead, as shown here in Fig. 1, pin 4 of IC1 should be connected directly to the anode of D2, and the connection from J4 to pin 4 should be removed.-Editor

FIG. 1

DIGITALKER AVAILABILITY

Your readers will be interested to know that the National Semiconductor Digitalker system you described in "Build This Speech Synthesizer (ComputerDigest, December 1988) is no longer being produced by National Semiconductor, nor is there any plan to begin production again. While many distributors (including some of your advertisers) stock the part, anyone contemplating using the Digitalker in a new design should be aware that once current stocks are depleted, no more will be available.

FRED WICKERSHAM

Product Mkting Manager
Telecommunication IC's
National Semiconductor
Santa Clara, CA

COPING WITH BASIC

I read with interest the article, "Coping with Coils," in the November 1988 issue of Radio-Electronics. As a beginner in computers, and knowing very little about
coils, I felt that it would be a good way to learn something about BASIC on a Hewlett-Packard 125.

I'm writing to inform you that the program, as it is presented in the article, will not work on the HP 125. Every time I tried to run the program, it displayed "Syntax Error on line 110." After some experimentation I found that it would work when line 110 was changed to read:
$110 \mathrm{pi}=3.1415926545$
Removing "cls:" from line 110 took care of the syntax error. I ran the program and it worked as de-scribed-until the end. After briefly displaying the calculations, it exited the BASIC mode. So I modified lines 540 and 1000 as follows:

540 if n 9999 then print "ERROR turns count larger than $1000^{\prime \prime}$: END 1000 END
Changing "system" to "END" lets the calculations remain on the screen, so that I can read them and print them out if I want to. I can calculate other coils, one after the other, without having to take the
time to reinstall BASIC after each calculation.

Thanks for the chance to learn more about the HP 125.
RON RAMIREZ
Providence, KY

CHANGE OF ADDRESS

Del-Phone Industries is relocating to Florida on February 1, 1989. We are still supplying parts for the "Digital Telephone Lock (RadioElectronics, October and November 1988). The new address is: Del-Phone Industries, 4487 Plumosa Street, Spring Hill, FL 34606.

There have been no price changes; however, Florida residents must add the appropriate sales tax.

STEVE SOKOLOWSKI

COIL CORRECTION

I enjoyed David Powell's article, "Coping with Coils"-especially converting the IBM BASIC program to run on a modern computer. The program certainly makes RF-coil calculations easy.

There is one error in the program listing as printed. Line 855 should read:

PRINT INT (W.LENGTHINT(W.LENGTH/12)*12
With the values given in the article's Fig. 2, the length of wire is 99.868 inches, or 8 feet 3.868 inches, not 8 feet 10 inches as shown.
RUSSELL K. PRATER
Parker, FL

DATA-CARRYING CAPABILITY AND BANDWIDTH

Referring to "Communications Corner" in the October 1988 issue of Radio-Electronics, the frequency ratio of 5.5:1 does not necessarily indicate a high data-carrying capability. For example, the range from 1 Hz to 5.5 Hz would have a very low data-carrying capability.

What counts is the frequency bandwidth. The above example has a bandwidth of only 4.5 Hz . In the range Herb Friedman is discussing, the 200 nm UV has a frequency of 1500 TeraHz , and the 1100 nm IR has a frequency of 270

TeraHz. The bandwidth is then 1230 TeraHz.

That bandwidth would give the theoretical potential of far more signal-carrying capability in a single fiber than all radio frequencies combined. However, it is the frequency bandwidth that counts, and not the ratio between the high and low.
MARION E. WOLFE
Glendale, CA 91202

PATENT PROBLEMS

I'd pretty much agree with Don Lancaster's observations on patents ("Hardware Hacker," RadioElectronics, October 1988), particularly that industry does not want inventions from outside, and that fewer than 1% of patents earn the cost of getting them.

In my younger (and hungrier) days I got patents for some people who hoped to sell them. They were enthusiastic; the inventions looked good. Then I went over the old files and listed (a) the patentees who were actually in the business of making and selling the
stuff invented, and (b) those who just hoped to sell or license the patent to some forward-looking company. It turned out that there was not one single success in category (b). Not one.

Were I to advise someone with an invention-or what he thinks is an invention-it would go like this: First, if you aren't already in the business or preparing to go into it, forget it. Second, a preliminary search in the patent literature is a must.
LAWRENCE FLEMING
Registered Patent Agent
Pasadena, CA 91106

THE DANGERS OF RADIATION

Leslie P. McCarty's letter in the September 1988 issue accuses Ra-dio-Electronics of "yellow journalism" concerning the health effects of radon and radiation. To support his contentions, he makes several or misleading statements.

Dr. McCarty's statement that there is a "negative correlation between the presence of radon and lung cancer" is at odds with multi-

Cut Your Video Servicing Time By 54\%

With the Market Proven VA62 Universal Video Analyzing System.

Today's VCRs, TVs, and MTS Stereo TVs require a proven method to quickly isolate the defective component. New technology has made simple problem solving a time-consuming and expensive procedure.

A survey of over 1500 Video Analyzer owners has shown that the VA62's unique signal substitution method has reduced their video servicing time by an average of 54%, and increased their servicing profits.

You can join the successful service centers that have cut their video servicing time and increased their profits with the VA62 Universal Video Analyzing System. Call for a brochure on the VA62. Call 1-800-843-3338, and increase your profits.
In Canada Call 1-800-851-8866.

3200 Sencore Drive, Sioux Falls, SD 57107
100\% American Made

TALK IS CHEAP.

Have you heard? For less than $\$ 90$ your AT or XT-compatible computer can talk! All it needs is the HV-2000 Computer Voice Kit from Heathkit.

Reading letters, transcriptions and computerized instruction can be easier and quicker than you ever thought possible. Computer games gain a new dimension. Your computer can even entertain children

Computer Voice will allow your computer to recite reference and research information from timesharing services. Or, speak radio transmitted ASCII information.

The HV-2000 Computer Voice Card, containing speech synthesizer and audio amplifier, plugs into any AT or XT-compatible computer's expansion slot. An external speaker is also included. Versatile, Heathdeveloped software gives you a wide variety of voices and easy interface to high and low level languages.

The HV-2000 Computer Voice. At less than $\$ 90$, talk IS cheap. To order, call toll-free 1-800-253-0570. Use your Visa, MasterCard, American Express or Heath Revolving Charge card. Or call 616-982-3614 for the nearest store location.
year epidemiologic studies of data from the U.S., Sweden, and Canada. In 1984 the National Council on Radiation Protection and Measurements estimated that among every one-million people exposed over a lifetime to a relatively low dose of radon, there would be an average of 130 lung-cancer deaths above those normally occurring. That risk estimate was recently raised by nearly a factor of three, to 350 additional lung-cancer deaths, following a 3 -year study by the Na tional Research Council of the National Academy of Sciences.

That new figure falls into the middle of the EPA-estimated range of 5,000 to 20,000 lung-cancer deaths per year linked to radon exposure-making radon the second leading cause of lung-cancer deaths after smoking. The study also found that the separate risks of lung cancer from radon and smoking are not additive, as some experts have believed. Radon exposure multiplies smokers' lungcancer risk by at least a factor of ten.

Dr. McCarty also states that there is nothing to support the EPA-set action level for radon exposure of 4-picoCuries per liter ($\mathrm{pCi} / \mathrm{l}$), implying that the level has been set too low. Establishing en-vironmental-exposure limits for even well-recognized publichealth hazards can be very difficult. Estimates of the risk to the general population have been characterized through evaluations of lung-cancer mortality rates and radon-exposure data for uranium miners working in environments with typically high levels of radon gas.

In the above-mentioned study, risk estimates calculated by the National Research Council were referenced to a measurement called Working Level Months (WLM). A WLM exposure is based on a specific amount of alpha-particle energy per liter of air over a 170 -hour work month. A person staying at home an average of 12 hours per day, and exposed to a radon level of $4 \mathrm{pCi} / \mathrm{l}$, would receive about 0.5 WLM annual exposure. Rather than too low, that level may be too high. That study found that people exposed each year to radon levels at or slightly
above the present EPA limit have a 50% greater risk of contracting lung cancer than people who are exposed only to the extremely low, normal levels of radon in outdoor air. Living with a $4-\mathrm{pCi} / \mathrm{l}$ level of radon is equivalent to smoking eight cigarettes a day, or undergoing 200 chest X-rays in a year.

With respect to detecting radon with a Geiger counter, Dr. McCarty guesses "that alpha particles do not penetrate" the window of the Geiger-Mueller tube. Alpha particles are indeed characterized by shallow penetration depths. (The short penetration depth is associated with the higher linear-energy transfer of such particles as compared to X-rays and gamma rays, and reflects the generally moredamaging nature of particulate radiation.) However, a typical halogen-quenched GeigerMueller tube, having a thin mica end window (on the order of 1.4 milligrams per centimeter squared) is quite capable of detecting alpha particles down to 2.5 MeV directly. Detection sensitivity is generally greater than 80% at energies above 3.6 MeV . Radon decays predominantly through emission of particles at energies in excess of 5 MeV .

I also find it interesting that, after his comments concerning the detection of alpha particles, Dr. McCarty concedes that a "Geiger counter can measure some of the radon daughters." Of the six direct and indirect radioactive daughters of radon, four are predominantly alpha-particle emitters.

While I cannot personally judge the extent of Dr. John Gofman's objectivity, Dr. McCarty appears willing to accept a court statement that "Dr. Gofman's...conflict with all the world's radiation experts...destroys his credibility as an objective witness." I would tend to suspect any statement containing the phrase "all the world's...experts." The "experts" in radiation health risks not only have had difficulty estimating the exact national magnitude of in-door-radon pollution, but continue to debate risk assessments. Dr. McCarty apparently has his own bias in that area-as we all probably do.

Complete customer satisfaction...superior service...friendly, knowledgeable personnel... quality merchandise... providing the best values in leading edge technology.

DMM-300 $\quad \$ 79.95$

3.5 DIGIT DMM/MULTITESTER

This full function 3.5 digit DMM offers highly accurate performance and a host of added features like audible
continuity, capacitance, transistor, temperature, and concontinuity, capaciance, ransistor, temperature, and contest leads and battery included.

* Basic DC accuracy: plus/minus 0.25%
* DC voltage: $200 \mathrm{mv}-1000 \mathrm{~V}, 5$ ranges
* AC voltage: $200 \mathrm{mv}-750 \mathrm{~V}, 5$ ranges
- Resistance: 200 ohms-20 M ohms, 6 ranges
* Capacitance: 2000pt-20 $\mu \mathrm{f}, 3$ ranges
- Conductance:200ns
* Fully overload protected
- Input impedance: 10 M ohm

DMM-100

3.5 DIGIT POCKET SIZE DMM

Perfect for the field service technician. Shirt pocket size without compromising features or accuracy. Large, easy to read ${ }^{1 / 2} 2^{\prime 2}$ LCD display. Fully overioad protected for saiety. 2000 hour battery life with standard 9 v cell. Probes and battery included.

* Basic DC accuracy:plus/minus 0.5\%
* DC voltage: $2 v-1000 \mathrm{v}, 4$ ranges
* ACvoltage: $200 \mathrm{v}-750 \mathrm{v}, 2$ ranges
* DC current: $2 \mathrm{~mA}-2 \mathrm{~A}, 4$ ranges
* Input impedance: 10 M ohm
- Fully overioad protected
* Approx. $5^{\circ} \times 3^{7} \times 1^{\circ}$. Under 7 ozs

DPM-1000

Wide bandwidth and exceptional 1 mV /DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers or technicians at a remarkable price. Delayed triggering allows any portion of waveform to be isolated and expanded for closer inspection Variable Holdolf allows stable viewing of complex waveforms.

MODEL 2000

 $\$ 389.95$20 MHz DUAL TRACE OSCILLOSCOPE Model 2000 makes frequency calculation and phase measuremen aids in fast troubleshooting. Service technicians appreciate the TV Sync circuits for viewing TV-V and TV-H and accurate synchronization of the video signal, Blanking, VITS, and V/H sync pulses.

- Exceptionally bright 5° CRT
- Built-in component tester
- TV Sync filter
- X-Yoperation ' $110 / 220$ volts

DMM-200
3.5 DIGIT FULL FUNCTION DMM

Get highly accurate periormance at a very affordable price. Rugged construction, 20 amp current capability and 22 ranges make it a perfect choice for serious field or bench work. Low battery indicator andtilt-stand. Probes and 2000 hour battery included.

* Basic DC accuracy: plus or minus 0.25%
- DC voltage: $200 \mathrm{mv}-1000 \mathrm{~V}, 5$ ranges
- AC voltage: $200 \mathrm{mv}-750 \mathrm{~V}, 5$ ranges
* Aesistage: $200 \mathrm{mv}-750 \mathrm{~V}, 5$ ranges
* $\mathrm{AC} / \mathrm{DC}$ current: $200 \mu \mathrm{~A}-20 \mathrm{~A}, 6$ ranges
- Input impedance: 10 M ohm
* Fully overload protected
: Approx. $T^{*} \times 3^{1 / 2^{2}} \times 11 / 2^{\text {. }}$. Wt. 11 ozs .
3.5 DIGIT PROBE TYPE DMM
$\$ 54.95$
Custom 80 pin LSI chip provides accuracy and reliability in such a compact size. Autoranging, audible continuity and
\star R YEAR REPLACEMENT WARRANTY data hold feature help you p
Case and batteries included.
- Basic DC accuracy: plus/minus 1%
* DC voltage: $2 v-500 \mathrm{v}$, autoranging
- AC voltage: $2 \mathrm{v}-500 \mathrm{v}$, autoranging
- Fully overioad protected
- Input impedance: 11 M ohm
- Approx $61 / 2^{2} \times 15 \times 34^{2}$. Under 3 ozs.
* 30 DAY MONEY BACK GUARANTEE
* TOLL FREE TECHINICAL SUPPDRT
* NEXT DAY AIR SHIP AVAILABLE

JDR INSTRUMENTS, 110 KHOWLES DRIVE, LOS GATOS, CA 95030 RETAIL STORE: 1256 SOUTH BASCOM AVE, SAN JOSE, CA (408) 947-8881

COPYRIGHT 1987 JOR MICRODEVICES

> manन

I will agree that the Journal of Health Physics can probably consider the biological effects of ionizing radiation better than Ra-dio-Electronics can. The public majority, however, does not subscribe to the former publication; that should not exclude them from the debate. Public exposures to radon far exceed those from the more widely reported Three Mile Island accident. I believe that the data supports the conclusion that radon is a significant health hazard, and long-term exposure should be viewed with some degree of alarm. Only an informed and educated public can rationally address health-risk problems of that nature. Radio-Electronics has not engaged in the cheaply sensational reporting of "yellow jour-nalism"-nor has it strayed from what is "technically correct."
TIM M. SHARON, Ph.D.
El Toro, CA

CABLE-HUM CURE

In the August 1988 "Letters" column, Melvin Zion suggested a
"cure"for cable-TV converter hum. I have used the same vol-ume-adjustment solution, but I would consider it only a temporary "fix." I, and several of my friends, have experienced the problem of $60-\mathrm{Hz}$ hum on various cable systems, and I have always been able to get rid of it.
My solution is to use two 75-to-300 ohm transformers connected back-to-back at the 300 ends. That seems to provide the isolation from the hum. Each of the transformers provides electrical isolation but allows the signal to be passed inductively, via the ferrite core. I use two transformers to ensure that the 75 -ohm impedance is maintained.
I suppose that a single isolation transformer (with 1-to-1 windings) would be sufficient. I have not tried that, because one or two of the 75 -to- 300 variety are usually provided with devices to be used with cable.

For the electronics engineers in the crowd: I know that the use of transformers can cause other
problems. However, I have only noticed the elimination of the $60-$ Hz hum when using that particular arrangement.
KIRK JOHNSON
Santa Clara, CA

ANTIQUE CAR-RADIO MEMORIES

In his "Antique Radios for Antique Autos" (Radio-Electronics, July 1988) Richard D. Fitch made no mention of Motorola.
I had a Radio-Operators First Class license, and I worked parttime for radio station WIBO in Chicago until they went off the air in June, 1933. I remember that in the early 1930's Motorola had a sales room and installation shop on Washington Blvd. in Chicago. They had a promotion deal whereby you could have a Motorola radio installed in your car for $\$ 125.00$. If you sent them a customer, they gave you a $\$ 25.00$ refund. If you referred five customers to have radios installed in their cars, your radio was free.
C.E. STEIL

Loveland, CO

Now NRI trains you to be today's expert security electronics technician as you install and troubleshoot state-of-the-art security systems in your own home and auto.
Violent crime, theft, fire . . .they're facts of life in the U.S. today. But now there's good news, too. All across the nation people are fighting back with high-tech electronic security systems. In fact, Americans will spend over 17 billion dollars on security services and equipment by the year 1991.
For you, this new consumer demand for electronic security systems means even more good news. It means a breakthrough opportunity to get in on the ground floor of a booming new industry. Now, no matter where you live, you can start a high-paying career-even a business of your own-installing, servicing, and maintaining residential and commercial security systems.
Best of all, NRI's ready now to give you the hands-on security electronics training you need to get started fast.

Make good money in a challenging career as a monn security electronics technicianeven start a profitable new business of your own

Right away, you get the skills you need to install and service all security systems NRI's at-home Security Electronics training gives you solid electronics know-how, plus a complete working knowledge of popular security devices in use today.
You learn how to install and service magnetic contacts and pressure mats. microwave, ultrasonic, and passive infrared detectors. . personal identification systems and electronic listening devices. . .even central station alarm systems and today's most sophisticated fire warning equip-

Installing bome security systems like this closed-circuit camera and monitor is just one way you can make money as a security electronics tecbnician.
complete electronic alarm systems in your own home and auto, testing and troubleshooting working alarm circuits. You actually safeguard your own property while gaining ment. But that's not all.

Your hands-on training includes state-of-the-art CCTV equipment plus home and auto electronic alarm systems you keep NRI gives you hands-on experience with today's newest, most popular security systems as you train with the professional closedcircuit television surveillance equipment and high-quality electronic home and auto alarm systems included in your course.

Step by step, you learn by doing. . .evaluating your own security needs, installing

EquIPMENT REPORTS

American Reliance AR-6400P Cable Tester

Don't let cable problems slow you down.

CIRCLE 39 ON FREE INFORMATION CARD

HAVE YOU EVER SPENT HOURS TRYING to troubleshoot a computer interfacing problem only to find that a short between 2 pins in the 25 conductor cable was the cause? Are you involved with electronics manufacturing where cabling problems are a constant qualitycontrol concern? We've recently examined a tool for technicians and manufacturers who routinely come up against cabling problems
and who need a quick way to find and solve them: the $A R-6400 \mathrm{P}$ cable tester from American Reliance, Inc. (9241 E. Valley Blvd., Rosemead, CA 91770).

The $A R-6400 P$ is a micro-processor-based instrument; it consists of a main unit with two 64pin ports and an optional test fixture which is connected to the main unit by two 64-pin ribbon cables. The test fixture offers conve-
nient access to the I/O ports of the tester. Various connectors can be attached to the test fixture to allow convenient testing of generic cable assemblies. The test jig comes equipped with various D-type and Centronics-type connectors, which you might expect to come across when servicing computers. It is possible to add other connectors to the test fixture, but we would assume that most users would want to make their own test jigs.

Cables can be tested for opens, shorts, and mis-wiring. Intermittent connections can be detected and latched as you squeeze and wiggle the cable. The integrity of the cable's insulation can also be verified.

Non-standard cables present no problems to the tester, as long as you have a good cable that the tester can learn from. To teach the
continued on page 24

Canon FAX-L920 Laser Facsimile
 The future of facsimile is here today.

CIRCLE 40 ON FREE INFORMATION CARD

the facsimile revolution is here, and it shows no signs of slowing down. Many radio stations across sic requests by fax, and local takeout restaurants accept lunch orders by fax. Fax is the fastest growing item in the fast-growing home office market. But don't expect the fax machines of tomorrow to be like the ones you're now familiar
with. Expect them to be like the FAX-L920 plain-paper laser facsimile from Canon U.S.A. (One Canon Plaza, Lake Success, NY 11042).

The FAX-L920, which consists of a main unit and a printer, doesn't look like a fax machine. In fact, we originally intended to show the machine on the cover of our November 1988 issue, which
focused on fax technology. We thought the Canon machine would be a great choice because it was the most technically sophisticated fax we knew of. We eventually decided against using it on the cover because we didn't think that people would recognize it as a fax-the machine looks more like an office copier than a fax. (It is, incidentally, a full-featured laser copier, too.)

Advanced features

The FAX-L920 features a 32 megabit memory that makes the machine's advanced features possible, including batch transmission, relay broadcast, confidential mailboxes, delayed transmission, and more.

Batch transmission is the ability to collect documents bound for any of up to 24 locations, and to send them at programmed times. In a real-life situation, a head of-
fice could collect, throughout the day, documents for its 24 salesmen stationed throughout the world. At pre-programmed times-which could correspond to the opening of each branch office-the documents would be sent to their destinations. In a high-volume operation, the savings in telephone costs could be dramatic.

Relay broadcast is a way of reaching hundreds of locations quickly and cheaply. An originating unit can be programmed to send a fax document to up to 151 relay units, each of which can be programmed to send them on to 150 additional locations. The main benefits are speed and, again, the ability to dramatically cut long-distance telephone costs. For example, a large corporation with several hundred stores nationwide could send a fax document to its regional offices. Each regional office could then relay the document to the stores in its area.

Confidential mailboxes can collect incoming documents and store them in memory. The contents of the mailboxes are printed only when the correct password is entered. Of course, only other Canon units can input data to the password-protected mailboxes. The confidentiality (or its lack) of faxed documents is an important issue that is only now beginning to be recognized.

A host of other convenient features are offered by the FAX-L920. For example, memory polling allows other Canon machines to request documents that have been stored in memory. Also, while the unit is receiving documents, you can still store documents in memory for transmission after reception is complete. Even running out of paper is less of a problem with the FAX-L920-up to 24 pages are automatically stored in memory until paper is supplied.

The fax features a flat-plate scanner, so sending images from books is not a problem. For paper documents, an automatic 50 -sheet feeder is standard. The one thing missing from the FAX-L920 is a computer interface. However, according to Canon, an RS-232 interface will be available in the future. When that becomes available, the fax will be able to work as a laser
printer and a page scanner for the computer, as as well as a laser facsimile and copier.
Some of the unit's specifications are impressive. In a proprietary mode, a page can be sent to another Canon machine in about 12 seconds. In standard G3 mode, that increases to 18 seconds, and in a G2 mode things slow down considerably. Its scanning density is impressive as well. In its ultra-fine
mode, the machine's horizontal resolution is 406 dots per inch, and its vertical resolution is 392 lines per inch. A halftone mode differentiates 16 shades of gray for reproducing photographs.

As you might expect, such advanced features and such impressive specifications do not come cheaply. The suggested retail price of the FAX-L920 laser facsimile is $\$ 8395$.

EOUIPMENTS REPORTS

continued from page 22
tester about a new cable, you must simply plug the good cable into the ports and press the read key twice. The $A R-6400 P$ will then scan the cable's configuration, and store its characteristics in memory. When similar cables are tested, they are simply plugged into the ports. If the characteristics match, then pass is displayed on the unit's LCD, and a two-tone beep is heard from the speaker. You can then wiggle and squeeze the cable to search for any intermittents. If one shows up, it will be latched, and the display will show BAD CONNECtion. The show keys can be used to get an exact description of the pins presenting the problems on the LCD. Alternatively, the pin data can be output to a printer via the $A R-6400 P^{\prime}$ s Centronics parallel printer port. To test another cable, the test key must be pressed. If any shorts or mis-wiring exist, the LCD will display ERROR. As before, the exact problem can be dis-
played on the LCD or output to a printer.

The cable tester features a STEP mode that allows it to memorize a sequence of up to 99 cable tests. That would be very useful to a manufacturer who wants to test all of the wiring harnesses of a piece of equipment before assembly. Each harness could be connected, in turn, to the tester; as long as they were tested in the proper order, the AR-6400P would know what configuration to expect. The STEP mode could also be used to test switching systems.

The AR-6400P features two additional modes, TOUCH and SEARCH, that can make a simple matter out of finding what's what in a rat's nest of wiring. Let's say, for example, that you have a cable with a connector on one end, but only wires on the other. You can plug the connector into the test fixture, and touch the bare wires with your hand. (You must be connected to the tester via a wrist strap.) The LCD will display the number of the pin you touched. The SEARCH mode is essentially the same. However,
instead of relying on body conductance, a probe is used to touch the test points.
We liked the unit's two battery backups; one of which keeps the memory non-volatile for more than two weeks. A separate rechargeable battery acts as a uninterruptable power supply for the tester. We do have a couple of minor complaints. We'd like to see a backlight for the LCD, and we'd like to see a carrying handle on the unit even though it's really a little too heavy (almost 15 pounds) and big (about $14 \times 12 \times 5$ inches) for field service. We'd also like to see a new, clearly written instruction manual.

All in all, we found the AR-6400P an easy-to-use special-purpose tool. In a manufacturing environment, the tester could be easily used by a non-skilled worker. A skilled technician could cut his troubleshooting time dramatically. In each case, the time saved and problems solved would quickly make up for the unit's $\$ 995$ price.

The optional test fixture sells for \$99.95.

Even the finest equipment in the world cannot guarantee noise-free operation. One "dirty" connection anywhere in the electrical path can cause unwanted noise or signal loss.

"MORE THAN A CONTACT CLEANER"

CRAMOLIN ${ }^{\text {® }}$ is a fast-acting, anti-oxidizing lubricant that cleans and preserves all metal surfaces, including gold.
When applied to metal contacts and connectors, CRAMOLIN ${ }^{\text {® }}$ removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivity.

CRAMOLIN ${ }^{\text { }}$	- USED BY THOSE WHO DEMAND THE BEST:		
Bell 8 Howell	Hewlett Packard	MCI(Sony)	Nakamichi
Boeing	John Fluke Mig.	Motorola	RCA
Capitol Records	Mcintooh Labs	NASA	Switchcraft SINCE 1956

1175-0 Industrial Avo., (P.O. Box J) - Escondido, CA 92025-0051 U.S.A. * (619) 743-7143

POCKET SIZE

SIZE: 4" H x 3.5"W x $\mathbf{1}^{\prime \prime}$ D MADE IN USA

FREQUENCY

COUNTERS

\#TA-100S

TO 2.4 GHZ
 8 LED DIGITS • 2 GATE TIMES ALUMINUM CABINET INTERNAL NI-CAD BATTERIES INCLUDED AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY \& ACCURACY

AC-DC• PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.3 GHz and $2.4 \mathrm{GHz}, 8$ digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the $1300 \mathrm{H} /$ A makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.
The size, price and performance of these new instruments make them indispensible for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

\#1300H/A	Model $1300 \mathrm{H} / \mathrm{A}$ 1-1300 MHz counter with preamp, sensitivity, < 1 mV , 27MHz to 450 MHz includes Ni-Cad batteries and AC adapter	\$169.95
\#2400H	Model 2400 H 10-2400 MHz microwave counter includes Ni-Cad batteries and AC adapter	. $\$ 299.95$
\#CCA	Model CCA counter/counter, for debugging, ultra sensitive, <50 micro volts at $150 \mathrm{MHzl} 1-600 \mathrm{MHz}$ with adjustable threshold, RF indicator LED. Includes Ni-Cad batteries and AC adapter	. $\mathbf{2 9 9 9 . 9 5}$

ACCESSORIES:

\#TA-100S	Telescoping RF pick-up antenna with BNC connector \$12.00
\#P-100	Probe, direct connection 50 ohm, BNC connector $\mathbf{\$ 2 0 . 0 0}$
\#CC-12	Carrying case, gray vinyl with zipper opening. Will hold a counter and \#TA-1000S antenna.

ORDER FACTORY DIRECT
FLA (305) 771-2050
1-800-327-5912

AVAILABLE NOW!

OPTOELECTRONICS ING.

VISA ${ }^{\circ}$

Orders to US and Canada add 5\% of total (\$2 min, $\$ 10$ max)
5821 N.E. 14th Avenue Ft. Lauderdale. Florida 33334

Florida residents add 6% sales tax. COD fee $\$ 2$.

New Products

CIRCLE 10 ON FREE INFORMATION CARD

ELECTRONIC ORGANIZER. A recent survey conducted by Sharp Electronics revealed that 50 percent of business executives spend half their work time out of their offices, traveling or meeting with business associates or customers. To help them-and busy people in all walks of life-keep organized, Sharp has introduced the Wizard, a hand-held instrument that combines a personal computer, phone directory, calculator, appointment diary, calendar, and world clock in
a 4×6-inch unit weighing only 8 ounces. Information can be transferred between two Wizard units, and bi-directionally between the Wizard and a PC. It also connects to a printer to produce hard-copy documents.
The unit (model OZ-7000) is menu-driven and user-friendly, requiring virtually no computer or programming knowledge. The Wizard has raised keypads, separate alpha and numeric keys, and a 16×8-line LCD display. A software
card enhances the command keypad and allows the user to access the Wizard's seven built-in capabilities at a glance. Other inte-grated-circuit software cards-a time-management system, thesaurus/dictionary, and 8 -language translator at present, with more planned for the future-are available as options. The addition of those cards will increase the Wizard's 32 K RAM memory up to 96 K .

The seven built-in functions include the calendar mode that features daily and weekly display, with 200-year capability; the schedule mode that allows the user to insert names, notes, and comments for each appointment; the telephone mode that permits customized storage and retrieval of entries by name, company, phone/fax number, and address; and world/local mode that tells the time in over 200 cities. Up to 16 pages of typed information can be stored in the Wizard's memo mode. As a calculator, the OZ-7000 offers 10 -digit ciphering with 3-key memory and can function as a paperless printer for up to 50 entries. For confidentiality, the secret mode prevents unauthorized access to password-protected information. All of those built-in OZ-7000 functions can be edited and updated continuously.

The Wizard has a suggested retail price of \$299.-Sharp Electronics Corporation, Personal Home Office Electronics Division, Sharp Plaza, Mahwah, NJ 07430.

WIRE STRIPPERS. Paladin's PA-1101 Maxi-Stripax simplifies the stripping and cutting of 10 - to 22-gauge wire. Its increased-leverage design and cam system reduce handpressure requirements by up to 30% and allow the tool to strip up to eight conductors simulta-
neously. The PA-1101 also features a built-in wire stop, insulation to 600 volts, front feed for close-in work, and a built-in wire cutter to speed your work.

The tool is designed to cut tlexible and solid PVC, and hard PVC insulation, as well as 10 - to 12 -
gauge wire. When used for multicore ribbon cables, several conductors can be stripped in one operation. Double-insulated or fiberoptic cable can be stripped in two operations with no adjustment.

The lightweight, but rugged, fi-berglass-reinforced PA-1101 has 66

CIRCLE 11 ON FREE INFORMATION CARD
stainless-steel stripping blades that are rated for a service life of 200,000 strips. Those blades will not cut or nick the internal wire while stripping.

The PA-1101 Maxi-Stripax, with cleaning brush, has a suggested list price of $\$ 52.95$.-Paladin Corporation, 3543 Old Conejo Road, Suite 102, Newbury Park, CA 91320.

MENU-DRIVEN MULTIMETER.

Simpson's Model 560 menu-driven multimeter was designed for serious engineers and designers in audio, communications, and computer, as well as industrial-control fields. All of the unit's features and capabilities are accessible through front-panel, menu-driven programming.

The Model 560 features very fast auto-ranging, a $500-\mathrm{kHz}$ frequency counter, relative readings, and continuity and diode checks with audible beeper. Centronicsprinter or RS-232 interfaces are available. The unit has data-logging capability on any selected range with $2,150-$ measurement

CIRCLE 12 ON FREE INFORMATION CARD
memory and battery back-up. The dual-LCD format has a 5-digit, 52segment measurement display and a 4-line menu/programming display.

The unit's functions include DC volts, true-RMS AC, or AC-plus-DC coupled volts, low and high power resistance; DC, and true-RMS AC or AC-plus-DC coupled amps; 5Hz to $500-\mathrm{kHz}$ frequency; dBm on any voltage range; diode and continuity tests; differential-peak hold; Rel; and Zero.

The available Centronics-compatible printer port is fully isolated for 8-bit data with strobe and busy. The isolated RS-232C serial port offers 300 - to 9600 -baud rates. Nonvolatile RAM, with battery backup, retains the last user selections and readings.

The Model 560 menu-driven multimeter, including operator's manual, test-lead kit, and calibration certificate, costs $\$ 2,195.00$ with RS-232C interface, and $\$ 2,395.00$ with Centronics inter-

FLLIKI Introductory SALE: NEW DMMS
 for Immediate Delivery!

Value Leoder-Word's Most Popular

Model 75
Autoranging + Range Hold Audible Continuity Function
$\$ 105 \mathrm{reg}$ S $\$ 119$
Model 77
Touch-Hold Feature + Features of Model 75
\$102 reg. S159
Model 37
Bench/Portable, 0.1 VDC Accuracy 10 A Range $2 y$ r. Warranty

reg. $\$ 249$

THE NEXT GENERATION OF ELUKE METERS HAS ARRIVED

Announcing the

New 80 Series DMM
FLUKE, the technology and high performance leader now offers their most advanced and versatile analog/digital multimeter featuring 40 ranges and 11 functions including frequency, capaci-
 tance, duty cycle, min $/$ max, touch hold, and more $\mathrm{min} / \mathrm{max}$, touch hold, and more
packed into a dust and splash-proo EMI shielded case.
Model 83 33/4 Digit, 4000 count .3\% DC Acc.
Intro. Price \$189.
Model 85 33/4 Digit, 4000 count .1\% DC Acc.
Intro. Price \$219.
Model 87 4½ Digit, True RMS . 1% DC Acc.
Intro. Price $\$ 259$.

31/2 DIGIT
HIGH-ACCURACY
HAND HELD
Model 80213
0.25% DC Accuracy, Audible
Continuity Function
$\$ 185$ reg. $\$ 209$
Model 80208
0.1% DC Accuracy, Audible Continuity \& Conductance Function
$\$ 229$

reg. S259

Model 80248

0.1% DC Accurocy, 11 Functions Peok Hold, Temperature
$\$ 2.97_{\text {reg. } \$ 299}$
Model $8026 B$
0.1% DC Accurocy TVe RNSACVOtS \& Curent
$\$ 29 \% \mathrm{reg} . \$ 269$

CIRCLE 108 ON FREE INFORMATION CARD
DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS

While watching renta movies, you will notice annoying periodic color darkening, color shift, unwanted lines, flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. Digital Video Stabilizer: RXII completely eliminates all copy protections and jamming signals and brings you crystal clear pictures.

FEATURES:

- Easy to use and a snap to install
- State-of-the-art integrated circuit technol
- ogy
- 100\% automatic - no need for any troublesome adjustments of patible to all types of VCRs and TVs
- The best and most exciting Video S
the market
- Light weight (8 ounces and Compact ($1 \times 3.5 \times 5$) - Beautiful deluxe gift box - Uses a standard 9 Volt battery which will last 1 2 years.

WARNING:
SCO
Electronics and RXII dealers do not encourage people to use the Digital Video Stabilizer to duplicate rental movies or copyrighted video tapes. RXII is intended to stabilize and restore crystal clear picture quality for private home use only.
(Dealers Welcome)

ToOrder: \$49 ea + s3 for FAST UPS SHIPPING 1-800-445-9285 or 516-694-1240 Visa, M/C, COD M-F:9-6 (battery not included) SCO ELECTRONICS INC.
Dept. C11 62 Marine St. Farmingdale NY 11735 Unconditional 30 days Money Back Guarantee
face.-Simpson Electric Company, 853 Dundee Avenue, Elgin, IL 60120.

PORTABLE OSCILLOSCOPE.

Createc's SCOUT SC-02 is a complete analog-to-digital, digital-toanalog measurement system. Sur-face-mount production technology allows benchtop features to be packed into a durable 25 ounce, handheld package that functions as an oscilloscope, a digital multimeter, a frequency counter, and a signal computer.

The oscilloscope's two independent $20-\mathrm{MHz}$ digital-to-analog converters permit full-speed and parallel capture of periodic or sin-gle-shot waveforms. The SCOUT SC-02 presents time, voltage ranges, cursor measurements, and trigger positions on the waveform display. It has 46 storage memories for storing and recalling waveforms and all related data. Other features include dual-timebase viewing, precise trigger placement, and an additional 10 complete setup memories. One saves the current set of setup parameters when the unit is shut off; the other nine are fully user-programmable.

As a multimeter, the SCOUT SC-02 measures true-RMS voltages to 1 MHz with full-range accuracy of 1% or better. It also measures the DC-component, zero-to-peak, and peak-to-peak values. The unit can be fully DC-compensated for DC-voltage measurements of bet-

CIRCLE 13 ON FREE INFORMATION CARD
ter than 0.5% accuracy. It displays accuracy figures, along with the associated measurement values that are calculated independent of the temperature of voltage-range setting, using a zener reference and the D-to-A feedback system. The voltage-range setting and a small, oscilloscope-type display of the waveform are also displayed; those features allow the user to view and measure a variety of waveforms without switching between the multimeter display and the oscilloscope.

When used as a frequency counter, the SCOUT SC-02 performs time-period and fully autoranging frequency-setting measurements from $D C$ to 7 MHz , with a typical accuracy of better than 0.5%. Frequency and time measurements, with associated accuracy figures, are displayed in the multimeter mode.

The signal computer tracks all incoming waveforms and automatically adjusts the timebase, trigger, trace, and cursor positions. It provides sophisticated past-processing and analysis functions on captured data. In addition, the signal computer constantly calibrates the system for changes caused by age and temperature drift of the components. For volume users with special requirements, the SCOUT SC-02 can be custom programmed by the manufacturer.
The SCOUT SC-02 costs \$2,995.00.-Createc Signal Computer, 3337 Kifer Road, Santa Clara, CA 95051.

SYNTHESIZERS GENERATORS.

Philip's series of synthesizers/ function generators, combining full-GPIB programmability with high resolution and a wide choice of functions, consists of the Models PM 5191 SM, PM 5192 SM, and PM 5193 SM, and the PM 5193 VM that provides an additional videomodulation facility.

The series is designed for use in applications where two or more instruments, such as generators and counters, must be synchronized. The function generators can be synchronized at 10 MHz or any sub-harmonics of that frequency (i.e., $1 \mathrm{MHz}, 2 \mathrm{MHz}, 5 \mathrm{MHz}$), allowing a complete setup of different instruments to be synchronized

EXPAND YOUR CAREER HORIZONS...

 microprocessors function in computers.

START WITH CIE.

Microprocessor Technology. Satellite Communications. Robotics. Wherever you want to go in electronics... start first with CIE.

Why CIE? Because we're the leader in teaching electronics through independent study. Consider this. We teach over 25,000 students from all over the United States and in over 70 foreign countries. And we've been doing it for over 50 years, helping thousands of men and women get started in electronics careers.

We offer flexible training to meet your needs. You can start at the beginner level or, if you already know something about electronics, you may want to start at a higher level. But wherever you start, you can go as far as you like. You can even earn your Associate in Applied Science Degree in Electronics.

Let us get you started today. Just call toll-free 1-800-321-2155 (in Ohio, 1-800-362-2105) or mail in

CIRCLE 60 ON FREE INFORMATION CARD
the handy reply coupon or card below to:
Cleveland Institute of Electronics,
1776 East 17th Street, Cleveland, Ohio 44114.

C $=$ world Headquarters

ARE-112

Cleveland Institute of Electronics, Inc.

1776 East 17th Street - Cleveland, Ohio 44114
\square Please send your independent study catalog.
For your convenience, CIE will try to have a representative contact you - there is no obligation.

Print Name

THROUGH HOME STUDY
Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.

COOK'S INSTITUTE OF ELECTRONICS ENGINEERING

(자) [롤 4251 CYPRESS DRIVE
 JACKSON, MISSISSIPPI 39212

CIRCLE 58 ON FREE INFORMATION CARD

CHEMICAL SOLUTIONS

FREE CHEMTRONICS CATALOG! Comprehensive new source for over 200 products used in electronic manufacturing and field service. Precision cleaning agents, flux removers, bulk solvents, circuit refrigerants, precision dusters, non-residual wipers, foam swabs, premoistened pads/swabs, antistatic compounds, conformal coatings, lubricants, adhesives, desoldering braids, rosin core solder and solder masking agents. Complete with technical specifications and application guide.

Chemtronics Inc. 681 Old Willets Path Hauppauge. N. Y. 11788 516-582-3322
with a single central clock. In addition to all standard-bus functions, all four models support bus-learn mode and can transmit status and setting information to the controller at any time; the units are thus suitable for flexible, bus-based au-tomatic-test systems.

CIRCLE 14 ON FREE INFORMATION CARD
The PM 5193 SM is a $50-\mathrm{MHz}$ unit with 20 -volt peak-to-peak output. It offers crystal-controlled frequency, 8 -digit resolution, and comprehensive modulation facilities. Eight waveforms are available: Sine wave, square wave, negative and positive sawtooth, haversine, triangle, and positive and negative pulse. The modulation modes-AM, FM, sweep, burst, and gating-can be controlled internally or by an external signal source. Voltage can be set in peak-to-peak, RMS, or dBm .

The PM 5191 SM-a $2-\mathrm{MHz}$ instrument with 30 -volt peak-topeak output-and the PM 5192 $S M$-with a $0.1-\mathrm{mHz}$ to $20-\mathrm{MHz}$ range and 20 -volt peak-to-peak output-both feature high-output accuracy and repeatability. Five waveforms are standard on both models: Sine wave, square wave, triangle, and positive and negative ramps. The output voltage on both can be set in RMS, peak-to-peak, or dBm . The PM 5191 SM provides AM modulation; the PM 5192 SM offers AM/FM/gating modulation and full sweep facilities.

The PM 5193 VM synthesizer/ function generator adds video modulation to the wide range of standard facilities of the PM 5193 $S M$. The former's video-modulation mode replaces the AM-external mode of the latter. In the video mode, the carrier frequency can be adjusted up to 50 MHz , with high accuracy and an 8-digit maximum resolution.

Suggested list prices are \$3,695.00 for the PM 5191 SM, $\$ 4,295.00$ for the PM 5192 SM,
$\$ 4,895.00$ for the PM 5193 SM, and \$5,895.00 for the PM 5193 VM.John Fluke Mfg. Co., Inc., P.O. Box C-9090, Everett, WA 98206; phone 800-443-5853, ext. 77.

DIGITAL AUDIO TAPE PLAYER.

 Mitsubishi's DT10-one of the first car DAT players to hit the American market-delivers the remarkable sound reproduction of digital audio for car audio systems. Its chassis is designed for easy installation in American, Japanese, and European cars, and an auxiliary radio/tape input switch permits the use of an RCA-type preamp output radio with the DAT player.The DT 10's advanced full-logic tape transport has extremely fast track-to-track scanning and rewind time (it is much faster than a regular cassette deck). Its dynamic range is rated at 85 dB , and signal-to-noise ratio is 90 dB with a frequency response of 20 to 20,000 Hz . The unit also features a moisture-protection circuit, with temperature sensor and automatic heater, that extends tape life and maximizes tape-player perfor-

CIRCLE 15 ON FREE INFORMATION CARD
mance by preventing condensation build-up on the internal components.

Other features include program skip, sequential program scan, four repeat modes (one-program, all-program, non-repeat, and selected program), tape-in indicator, automatic power off, and a large, multi-function LCD display. DT 10 dealers also offer a fairly decent selection of European digital-audio tapes-including jazz, classical, and pop formats-supplied by Delta Music Inc./Capriccio (Los Angeles, CA).
The DT 10 DAT player has a suggested retail price of $\$ 1650.00$.Mitsubishi Electric Sales of America Inc., Mobile Electronics Division, 800 Biermann Court, Mt. Prospect, IL 60056-2173.

NEW! Measure to the MAX with the first Test Bench you can hold in your hand

For ${ }^{\text {s }} 139.00$ you can replace a bench full of instruments

Large 3 3\% Digit
LCD Readout.
High-contrast
display, slanted Diode Test. Quick
for easy viewing check of diode

Logic Level Measurement. Checks TLL levels

Frequency Measurement. $20 \mathrm{~Hz}-200 \mathrm{kHz}$

DC and AC
Current

Capacitance Measurement. Up to $20 \mu \mathrm{~F}$

20 Amp Range

ZAP Proofed.
High-Energy
Fused
DC and AC Volts.
O.5\% DCV
accuracy
junctions /

Micro-miniaturization strikes again!
B\&K-PRECISION has combined the capa-
bilities of five popular instruments into
one hand-held Test Bench ${ }^{\text {™ }}$ unit. This 41 range voltmeter, ammeter, ohmmeter, frequency counter, capacitance meter, logic probe, transistor and diode tester features an extra-large LCD display. ruggedized case and B\&K-PRECISION quality.
You don't need a trunk full of instruments to get the job done. See your local B\&K-PRECISION distributor for immediate delivery on the new 388-HD Test Bench."

di BK PRECHSION
 6470 W. Cortland St. Chicago, IL 60635 • 312-889-1448

 International Sales, 6470 W. Cortland St., Chicago, IL 60635
Canadian Sales, Atlas Electronics, Ontario

South and Central American Sales, Empire Exporters, Plainview, NY 11803

ENJOY CABLE TV MORE THAN EVER

SNOOPERSTOPPER/DATA BLOCKER

VMACROVISION...NOW YOU SEE IT, NOW YOU DON'T

MS1-KIT
Includes all the parts, pc board, AC adaptor, and instructions from a published construction article in Radio Electronics magazine.

- Remove copy-protection from video cassettes
- Digital filter type; removes only Macrovision pulses

JMAK-4 BLACK BOX

s1495
Original box as shown in ad with two feet and four holes to mount pc board.

- No adjustments; crystal controlled
- Compatible with all VCRs
- Uses automatic vertical blanking level
- Assembles in less than three hours

SIGNAL ELIMINATOR

- Works on cable or broadcast TV
- External adjustments allow precise tuning to any frequency \#23 H-Tuneable to ch. $2 \& 3$ ($50-66 \mathrm{Mhz}$) also 6 meter HAM TVI interference filter \#46 FM-Tuneable to ch. 4-6 (66-108 Mhz \& FM Band) \#713-Tuneable to ch. 7-13 (174-216 Mhz) \#1417-Tuneable to ch. 14-17 [A-0) (120-144 Mhz) \#1822-Tuneable to ch. 18-22 [E-v) (144-174 Mhz)

ELIMINATE a Channel

that you find unsuitable for family viewing, but is poorly scrambled by your cable company. OR

CLEAR UP a Channel

that presently contains severe interference by ELIMINATING whatever signal is causing this

Note: If picture and sound are equally affected, this IS interference and CAN be removed by our produc If only picture is affected, this usually IS NOT interference and CANNOT be removed by our product.

ORDER TOLL FREE ANYTIME 1-800-227-8529

Inside MA: 508-695-8699 Fax: 508-695-9694
Ask for additional free information
Add $\$ 3.00$ shipping \& handling on all orders unless otherwise noted. \$6.00 Canadian orders.
Visa, MasterCard, or C.O.D.
() CIS
with Infra-Red Remote
CABLE CONVERTER

- Microprocessor controlled PLL operation
- Skip channel memory eliminates unused channels

MC-702 Converter
s7995

- Fine tune memory
- UL listed/FCC approved
- Simple installation with any TV
- Includes battery and 3 foot coax
- Channel output 2 or 3 switchable
Add $\$ 3.50$ shipping \& handling
$\$ 9.50$ Canadian orders

T®®MTNOLOGM
 CICH DEFINITION TELE- VISION

The many ways of HDTV

LEN FELDMAN

AT LAST COUNT THERE WERE NEARLY 20 separate and distinct proposals for high-definition television systems. They generally fall into three major categories: fully compatible, semi- or backward-compatible, and those not compatible.

There are systems that are fully compatible with our presently used NTSC TV standards. Such systems display a conventional picture when tuned to on an older television receiver. Tuned to on receivers of the future, such systems would, generally speaking, offer increased resolution or picture detail as well as a new,
preferred aspect ratio of either 5:3 or 16:9. Present NTSC picture displays have an aspect ratio of $4: 3$. That explains why many wide-screen motion pictures, when broadcast by TV stations, often have the edges of the picture cut off, forcing motion picture producers to concentrate the major action of their stories towards the center of the screen. Those systems that claim full compatibility with NTSC require no additional bandwidth or spectrum space, beyond the 6 MHz presently assigned to over-the-airbroadcast TV stations.

A second category of high-defini-
tion television systems might well be described as semi-compatible or "backwards compatible." Such systems will deliver a standard NTSC picture for those owners who tune in with older NTSC sets. Transmission of those types of HDTV signals, however, would require additional bandwidth beyond the standard 6 MHz anywhere from 8 MHz to 12 MHz , which is two full channel widths. As was true of the first category, the benefits of such semi-compatible systems will only be realized by owners of new sets designed specifically for those systems.

FIG. 1-THE NTSC PIXEL is represented as a rectangle of 1.46:1 ratio, corresponding to the present 4:3 NTSC aspect ratio.

The third category of the HDTV system is one that can be best categorized as the "no compromise" approach. That is, systems in this category are totally incompatible with the existing NTSC system used in this country. Generally speaking, these systems require extended bandwidth, but provide the greatest number of scan lines (1050 or 1125) and the greatest picture detail, both horizontally and vertically.

Any attempt to describe fully all of the proposed systems in all three categories would require more pages than are in this entire magazine. To give you some idea of the complexity and diversity of the ongoing HDTV debate, we will instead describe, briefly, one or two systems in each category.

HD-NTSC

An interesting and fully compatible system for a new high-definition NTSC broadcast system was proposed more than two years ago the The Del Rey Group, of Southern California. The system, dubbed HDNTSC, can best be understood by regarding the smallest resolvable area of the NTSC picture as a "pixel," much as that term is used in referring to computer-screen resolution. In Fig. 1, the NTSC pixel is represented as a rectangle of $1.46: 1$ ratio, corresponding to the present $4: 3$ NTSC aspect ratio. A pixel, however, does not have to be rectangular or square in shape. It could be triangular, or even diamond shaped as shown in Fig. 2. One way to increase the number of addressable points of an image (and therefore the image detail) is to subdivide the pixels into smaller units, which might be called sub-pixels, as shown in Fig. 3.
Now, suppose a TV camera is able to scan only sub-pixel 1 during its first

FIG. 2-A PIXEL does not have to be rectangular or square in shape. It could be triangular, or even diamond shaped.
pass. After completing that frame $1 / 30$ th of a second later, the camera scans again, this time hitting only sub-pix-el-2 areas, and finally sub-pixel-3 areas. That approach is called a "TriScan" technique. At the receiving end, a conventional NTSC receiver would not be aware of "sub-pixels" and would simply paint areas 1,2 and 3 on top of each other as they come across in successive frames. A new, specially designed HD-NTSC TV set would reconstruct the same, higher detail image seen by the camera, placing the sub-pixels in their correct offset positions on the CRT. To change the aspect ratio, The Del Rey Group would simply "chop off" a few lines at the top and bottom of the existing NTSC line format, as illustrated in the comparison of Fig. 4. That arrangement would result in an
aspect ratio of 14:9, as opposed to the present $4: 3$. As a side benefit, the HD-NTSC system creates 69 horizontal lines per frame that are no longer needed for the transmission of picture information. That new "data window" might well be made available for other information, such as encoded stereo digital audio!

ACTV

Originally introduced through the joint efforts by RCA, NBC, GE, and The David Sarnoff Research Center, ACTV was another system that was fully compatible with NTSC, in that it required only a single $6-\mathrm{MHz}$ channel width for its implementation. Since then, the system has been divided into two systems, ACTV-1 (the original 6MHz wide channel proposal) and ACTV-2, a system that remains compatible with NTSC but requires two full $6-\mathrm{MHz}$ channels of bandwidth for its implementation. Here is how ACTV works: An original wide-

FIG. 3-ONE WAY TO INCREASE the number of addressable points of an image is to subdivide the pixels into smaller units, which might be called sub-pixels.

FIG. 4-TO CHANGE THE ASPECT RATIO, The Del Rey Group would chop off a few lines at the top and bottom of the existing NTSC line format.

FIG. 5-THIS IS HOW ACTV WORKS: An original wide-screen signal is digitized and encoded into the four components shown.
screen signal, provided from any high-definition source, is first digitized at the studio and encoded into the four components shown in Fig. 5.

1: The first component is a main, NTSC-compatible, interlaced signal with the usual $4: 3$ aspect ratio. It consists of the central portion of the picture that has been time-expanded to nearly the entire active line time plus the side panel low-frequency horizontal information that has been time compressed into left and right horizontal overscan regions, where they would be hidden from view on most standard home receivers. This signal is color encoded in standard NTSC format.

2: There is an auxiliary $2: 1$ interlaced signal consisting of side panel high-frequency horizontal information that has been pre-comb-filtered, NTSC encoded, and time expanded to half the active line time. The time expansion reduces the horizontal bandwidth of this component to a little over 1 MHz .

3: The third component is an auxiliary $2: 1$ interlaced signal consisting of horizontal luminance detail between approximately 5.0 and 6.2 MHz . This band of frequencies is first

FIG. 6-A 4.2-MHz BASEBAND SIGNAL is RF modulated into a standard $6-\mathrm{MHz}$ NTSC channel.
shifted downward to the range of from 0 to 1.2 MHz .

4: The fourth and last component is an auxiliary $2: 1$ interlaced "helper" signal, consisting of vertical-temporal (V-T) luminance detail that
would otherwise be lost in the down conversion to 525 -line interlace. On new, wide-screen receivers, this signal helps to reconstruct missing lines and to reduce or eliminate line flicker artifacts.

Join Electronics and Control Engineers' Book Club ${ }^{\circ}$
 BUCHSBAUM'S COMPLETE HANDBOOK OF PRACTICAL ELECTRONIC REFERENCE DATA, Third Ed. By W.H. Buchsbaum, revised by R.C Genn, Jr. 635 pp., 357 illus. \& tables. This best-selling reference is invaluable for engineers whose work involves going outside their own area of expertise. Coverage includes digital logic; optoelectronics; antennas and transmission lines; RF and microwave fundamentals; communications systems

television systems; computers; radio; recording; and more.
$583880-X$ Pub. Pr., $\$ 34.95$ Club Pr., $\$ 26.50$

PRINTED CIRCUITS HANDBOOK,

Third Edition. By C.F Coombs, Jr.
960 pp., 556 illus. Here in one handy volume is all the information you need to design, manufacture, test, and repair printed wiring boards and assemblies. This new edition features ten allnew chapters, including three on SMT. 126/097 Pub. Pr., \$59.50 Club Pr., \$45.50

32-BIT MICROPROCESSORS. Edited by H. J. Mitchell. 248 pp., 104 illus. and tables. A complete survey of the architecture, operation, and applications of today's most important new devices from AT\&T, Inmos, Intel, and Motorola.
425/85X Pub. Pr., $\$ 45.00$ Club Pr., $\$ 35.00$

MICROWAVE AMPLIFIERS AND OS-

 CILLATORS. By C. Gentili, 150 pp., 79 illus. A thorough, practical introduction to the theory and design of microwave amplifiers and oscillators, with coverage of the scattering matrix, the gallium arsenide field-effect transistor, and microstrip technology.229/953 Pub. Pr., \$34.95 Club Pr., \$27.95

COMMUNICATIONS RECEIVERS

 Principles and Design. By Ulrich L. Rohde and T.T.N. Bucher. 608 pp. 402 illus. Everything you need to know if you design or work with communications receivers, from theory to practical design approaches. Coverage includes all types of receivers: shortwave, broadcast, radar, military, marine, aeronautical, and more.535/701 Pub. Pr., \$59.50 Club Pr., \$44.50

- your one source for engineering books from over 100 different publishers
- the latest and best information in your field - discounts of up to 40% off publishers' list prices

ENGINEERING FUNDAMENTALS
FOR THE PROFESSIONAL ENGINEERS' EXAM, Third Ed. By L M. Polentz. 432 pp., 170 illus. Features worked-out solutions and full explanations for all sample problems so you can learn how to solve them. It's a dependable way to prepare for the exam or a perfect on-the-job reference
$503 / 931$ Pub. Pr., $\$ 36.50$ Club Pr., $\$ 27.95$

HANDBOOK OF ELECTRONICS TABLES AND FORMULAS

Sixth Edition

256 pages, illustrated. 583804-4 Up-to-date mathematical tables and electronic formulas in a convenient desk reference that you'll find indispensable. Included are basic formulas constants, government/industry standards, symbols and codes, service data, and more. The handbook also has new sections describing how to do has new calculations on a computer, and your calculations computer programs.

AUTOMATIC CONTROL SYSTEMS, Fifth Ed. By B. C. Kuo. 736 pp., illus. Provides an overview of automatic control systems, including in-depth coverage of classical control techniques, optimal control theory, and analog and digital control system design. This updated edition discusses the latest ideas on the use of computers to design control systems and as components of such systems.
583706-4 Pub. Pr., $\$ 51.00$ Club Pr., $\$ 36.95$

OP-AMP HANDBOOK, Second Ed.

 By F. W. Hughes. 320 pp., 231 illus. Organized for on-the-job reference, this handbook covers all facets of op-amps, hrom stability and protection to signal from stability and protection to signalprocessing using op-amps. Includes a processing using op-amps. Includes a for a variety of applications, procedures, and experiments.
$583651-3$ Pub. Pr., $\$ 39.00$ Club Pr., $\$ 27.50$

HANDBOOK FOR SOUND ENGI-

 NEERS: The New Audio Cyclopedla. Edited by G. Ballou. 1,247 pp., over 1,200 illus. This giant handbook gives you truly comprehensive coverage of sound-and the methods of producing, reproducing, controlling, changing, reinforcing, and measuring it.583913-X Pub. Pr., \$79.95 Club Pr., \$55.95

ESSENTIAL CIRCUITS REFERENCE

GUIDE. By J. Markus \& C. Weston. 528 pp., illus. Collects into one convenient volume more than 1,000 ready-to-use circuit diagrams for today's electronics applications. Now you can have the circuit you need in a matter of secondswithout having to reinvent the wheel. 404/623 Pub. Pr., \$59.50 Club Pr., \$47.50

CIRCUIT DESIGN FOR ELECTRONIC INSTRUMENTATION: Analog and Digital Devices from Sensor to Display, Second Ed. By D. Wobschall. 400 pp., 365 illus. Brings you the entire process of circuit design in a comprehensive, easy-to-follow format. This new edition reflects the latest in IC technology, including CMOS and ECL devices.
112/31X Pub. Pr., $\$ 49.50 \quad$ Club Pr., $\$ 36.95$
AMERICAN ELECTRICIANS' HANDBOOK, Eleventh Ed. By T. Croft and W. Summers. 1,824 pp., 1,560 illus. This newly updated handbook shows you how to select, install, maintain, and operate all the latest electrical equipment and wiring. It includes the most recent code requirements, basic formulas, and a wealth of circuit diagrams and illustrations.
139/326 Pub. Pr., $\$ 64.50$ Club Pr., $\$ 49,50$
MICROELECTRONICS, Second Ed. By J. Millman and A. Grabel. 1,001 pp., 646 illus. Takes you from the basics of semiconductor properties to an understanding of the operation of solid-state devices, and then to more advanced topics. Its up-to-date coverage, real-life examples, and practical data make this an ideal reference for the working engineer.
423/30X Pub. Pr., $\$ 51.95$ Club Pr., $\$ 41.50$

ENGINEERING MATHEMATICS

HANDBOOK, Third Ed. By J. J. Tuma.
512 pp., illus. This best-selling handbook gives you the essential mathematical tools-formulas, definitions, theorems, tables, and models for computer programming - that you need for your day-to-day engineering calculations.
654/433 Pub. Pr., \$46.50 Club Pr., \$34.50

BASIC TELEVISION AND VIDEO SYSTEMS，FIfth Ed．By B．Grob． 592 pp．，illus．Provides the clearest picture of how television and video systems work，and what to do when they don＇t Covers television receivers，VCR＇s video cameras，and cable systems－al in readable，practical detail． 249／334 Pub．Pr．，\＄34．95 Club Pr．，\＄24．95

ANALOG ELECTRONIC CIRCUITS．
By G．M．Glasford． 480 pp．， 350 illus Gives you the detailed information and equations you need to create and ana－ lyze top quality circuit designs or effec tively utilize the designs of others．
$583768-4$ Pub．Pr．，$\$ 55.00$ Club Pr．，$\$ 39.50$

HANDBOOK OF ELECTRONIC NOISE MEASUREMENT AND TECH－ NOLOGY，Second Ed．By C．A．Ver－ gers． 440 pp．， 213 illus．Provides an－ swers to all your questions about noise origins，causes，effects．Also shows you how to predict and measure noise，and how to design low－noise circuits 583947－4 Pub．PT．，\＄39．95 Club Pr．，\＄29．95

SWITCHGEAR AND CONTROL HANDBOOK，Second Ed．Edited by R．W．Smeaton．1，056 pp．， 789 illus． The only handbook that treats all as－ pects of switchgear control，including design，applications，safety，and main－ tenance．Updated to reflect the changes brought about by the use of computers，solid－state devices，and programmable controls．
584／494 Pub．Pt．，$\$ 75.00$
Cluh Pr．，$\$ 56.95$

ANTENNA APPLICATIONS REFER－
ENCE GUIDE．Edited by R．C．Johnson and H．Jasik． 496 pp．， 368 illus．and tables．Covers the major applications of antenna technology in all areas of com－ munications and their design methods． Emphasizes important new applica－ tions such as earth station，satellite， seeker，aircraft，and microwave－relay antennas．
$322 / 848$ Pub．Pr．，$\$ 53.95$ Club Pr．，$\$ 42.50$
MICROCOMPUTER DESIGN．By M． Hordeski． 406 pp．，illus．Emphasizes the most current，cost effective meth－ ods for developing，debugging and test－ ing all types of microprocessor prod－ ucts，including software and hardware． 583683－1 Pub．Pr．，\＄43．00 Club Pr．，\＄29．95

BOB MIDDLETON＇S HANDBOOK OF ELECTRONIC TIME－SAVERS AND SHORTCUTS．By R．G．Mid－ dleton． 378 pp．，illus．，softbound． dieton． 378 pp．，inus．，softbound． Packed wand－known brand－new techniques，this
trade and popular handbook makes it easier than ever to troubleshoot radio，TV，audio equipment，CCTV，and more．
583865－6 Pub．Pr．，\＄29．95 Club Pr．，\＄22．50

Be sure to consider these important titles as well！

INTRODUCTION TO RADAR SYS－ TEMS，Second Ed．By M．I．Skolnik． 579／091 Pub．PT．，$\$ 52.95 \quad$ Club Pt．， 542.50
Electromic tist buipment Principles and Applications．By Tj Byers

OPERATIONAL AMPLIFIERS AND LINEAR INTEGRATED CIRCUITS， Third Ed．By R．F．Coughlin and F．F． Driscoll．

Pub．Pr．，$\$ 40.00$ Club Pt．，$\$ 25.95$
MCGRAW－HILL＇S NATIONAL ELEC－ TRICAL CODE HANDBOOK，19th Ed． By J．E．MCPartland
457／077 Pub．Pr．，$\$ 42.50 \quad$ Club Pr．，$\$ 31.95$ HANDBOOK OF ELECTRONICS CAL－ CULATIONS FOR ENGINEERS AND TECHNICIANS，Second Ed．Edited by M．Kaufman \＆A．H．Seidman $355 / 281$ Pub．Pr．，$\$ 49.50$ Club Pt．，$\$ 37.50$ PROBABILITY，SIGNALS，NOISE．By J．Dupraz． Pub．Pr，S43．95 Club Pr．，$\$ 34.95$
POWER GENERATION CALCULA－ TIONS REFERENCE GUIDE．By T．G． Hicks．
288／003

HUMAN FACTORS REFERENCE GUIDE FOR ELECTRONICS AND COMPUTER PROFESSIONALS．BY W． E．Woodson．
717／664 Pub．Pr．$\$ 35.95$
Club Pr．，$\$ 22.50$
REFERENCE DATA FOR ENGINEERS： Radio，Electronics，Computer， and Communications，Seventh Ed．Edited by E．C．Jorda
$583619-X$ Pub．Pr，$\$ 69.95$

277／338 Pub．Pt，$\$ 52.95$ Club PT，$\$ 41.50$
FOR FASTER SERVICE IN ENROLLING CALL TOLL－FREE 1－800－2－MCGRAW

McGraw－Hill Book Clubs
Electronics and Control Engineers Book Club ${ }^{\text {（2 }}$
P．O．Box 582，Hightstown，NJ 08520－9959
Please enroll me as a member and send me the two books indicated，plus the HANDBOOK OF ELEC－ TRONIC TABLES AND FORMULAS．I am to receive one book for just $\$ 2.89$ ，the other at the discounted mem－ ber＇s price，plus local tax，shipping and handling charges．I agree to purchase a minimum of one addi－ tional book during my first year of membership as outlined under the Club plan described in this ad．I understand that a shipping and handling charge is added to all shipments．

Signature
Name
Address／Apt．\＃
City
State

FIG. 7-A WIDE-SCREEN RECEIVER recovers and equalizes the picture components and reconstructs the original wide-screen progressive scan signal.

Signal-components 1, 2 and 3 are passed through a special time-variant filter to eliminate V-T crosstalk between the main and auxiliary signals on a wide-screen receiver. The main signal is intra-frame averaged over all horizontal frequencies. Components 2 and 3 are amplitude-compressed in a non-linear manner, quadrature modulated on a phase-controlled subcarrier at 3.108 MHz , and added to component 1 . The result is a $4.2-\mathrm{MHz}$ baseband signal that is RF modulated into a standard $6-\mathrm{MHz}$ NTSC channel, as shown in Fig. 6. Component 4, the VT "helper" signal, is modulated in quadrature with the main RF picture carrier.

When received on an existing NTSC receiver, only the central portion of the main signal is seen. A wide-screen receiver, such as that shown in Fig. 7, recovers and equalizes components 1-4 and reconstructs the original wide-screen signal. Relative to NTSC, the reconstructed sig-
nal has left and right side panels offering standard NTSC resolution and a central portion with superior horizontal and vertical luminance detail in the stationary sections of the picture.

While ACTV-1, just described, is delivered within the existing $6-\mathrm{MHz}$ broadcast channel, a second version of the system, known as ACTV-2 is envisioned as well, when and if additional spectrum space is allocated. ACTV-2 would require an additional $6-\mathrm{MHz}$ channel of bandwidth. As illustrated in Fig. 8, a TV station might someday transmit both ACTV-1 and ACTV-2 signals. Both systems would offer an aspect ratio (on new sets) of $5: 3$ or $16: 9$, and both would have 1050 lines per frame and 29.97 frames per second. However, ACTV-2 would offer still greater improvements in luminance resolution (650 horizontal and 800 vertical, as compared to 410 horizontal and 480 vertical for ACTV-1) and a doubling of chrominance reso-
lution, which, in ACTV-1 is no better than in standard NTSC. The photos in the opening of this article show how a typical scene, transmitted in ACTV-2, would be viewed on a standard NTSC receiver (left) and how it would be seen on a new receiver equipped for ACTV-2 (right).

Philips HDS-NA

The abbreviation stands for High Definition System for North America, and the system, developed specifically for NTSC-TV based countries, would be usable on an equal basis for over-the-air broadcasting, CATV, di-rect-broadcast satellite or even fiberoptic transmission. The signal suitable for broadcasting or CATV has been dubbed HDNTSC and it consists of two major components. The first component carries the standard NTSC signal, while the second carries the additional information required to create the HDTV viewing experience.

As pointed out by Philips and others, an ideal HDTV system with double the present horizontal and vertical resolution and an increased aspect ratio would require about five times the bandwidth or spectral space of the current NTSC signal, or as much as 300 MHz ! To reduce those impractical bandwidth requirements, various signal-processing schemes have been proposed by the various HDTV proponents. One class of signal processing is based upon combining several picture frames from both the "past" and "present" in the scene captured by the video camera. In our article last month, we discussed such basic picture-enhancement schemes under the general heading of IDTV, or Improved Definition TeleVision systems. Philips has chosen a second approach that applies signal processing without the need for inter-frame picture information. The HDS-NA system can deliver 1.5 times the normal horizontal and vertical resolution of NTSC, wide aspect ratio, plus multiple channels of CD-quality digital sound.

The main HDNTSC signal carries NTSC and is a standard $6-\mathrm{MHz}$ channel. The extra information needed to create the HDTV viewing experience can be transmitted eventually as a digital bit stream with a bandwidth of 3 MHz (or one half the extra width of a present-day NTSC channel). Philips has suggested that the signal energy

FIG．8－A TV STATION MIGHT SOMEDAY TRANSMIT BOTH ACTV－1 and ACTV－2 signals． Both systems would offer an aspect ratio（on new sets）of $5: 3$ or 16：9，and both would have 1050 lines per frame and 29.97 frames per second．
of that extra augmenting channel can be well below the main NTSC signal level．That being the case，the extra signal might even be transmitted via the so－called＂tabu＂channels in each geographical area．

By＂tabu＂channels，we mean the TV channels that normally remain unassigned in a given area because they are adjacent to used channels． For example，if Channel 2 is assigned in a given city，Channel 3 remains unassigned．The same holds true for Channel 5 and 6，etc．（Channels 4 and 5，in the New York area，for example， are not really adjacent，as there is a 4－ MHz space between them．）If Philips is correct about that，then in the New York area，for example，both Channel 2 and 4 might＂share＂Channel 3 for their augmentation channel；each using one half（ 3 MHz ）of the other－ wise unassigned channel spectrum． Using the tabu channels is not a nec－ essary requirement for the Philips sys－ tem－it is just one possibility．The augmentation channels could just as easily be positioned at other，non－ contiguous frequencies which would have to be assigned for that purpose by the FCC if the Philips system were to prevail．As was true of ACTV，the

Philips system is＂backward compati－ ble．＂Owners of older NTSC TV sets will continue to receive＂normal＂ pictures while owners of newer sets designed for the HDS－NA system will receive the benefits of higher defini－ tion and a wider aspect ratio．

Battle Of Incompatibles

Finally，we come to the group of HDTV systems that are totally incom－ patible with our present day NTSC system（and，for that matter，with the PAL and SECAM systems used in other parts of the world）．Aside from the incompatibility problems of these systems，there is also the problem of attempting to establish a world－wide

FIG．9－ALL FORMS OF MAC，including MUSE，employ various amounts of pre－ emphasis for the video signals．
standard for a no－compromise HDTV system．That problem arises pri－ marily because of the fundamental difference in TV frame rates between U．S．（and Japanese）NTSC and Euro－ pean PAL．The European frame rate is 25 frames per second while the NTSC frame rate is 30 frames per second．

That difference is a throwback to the early days of TV，when scanning fields were synchronized to the power－line frequencies used（ 50 Hz in Europe， 60 Hz in North America and many sections of Japan）．Today，much more sophisticated systems of vertical synchronization are in use，but，unfor－ tunately，the standard frame rates are well entrenched in their respective counties．Thus，it may well be that two＂world＂standards may evolve for no－compromise，incompatible HDTV．The European proposal is for a $2: 1$ increase in number of lines per picture and a doubling of the pixel density or horizontal resolution with respect to their present broadcast sys－ tems．The Europeans would retain their present frame rate of 25 Hz ． However，much work has already been done to reduce the large area flicker problem that is so noticeable to continued on page 111

THE ORIGINAL PHONLINK WAS INTROduced in the May and June 1987 issues of Radio-Electronics. Back then, the Phonlink allowed you to control anything electrical by using a Touch-Tone telephone. The only drawback was having to run separate wires to each electrical device to be controlled. The Phonlink II improves on the original design by encoding the Touch-Tone commands (from any telephone) onto your household 120volt AC power line, thereby eliminating the need for external wiring. Those encoded commands are received by any of the common AC plug-in control units that use the $X-10$ system, (such as those from Radio Shack, Sears, Leviton, and others) which then switch the desired equipment on or off-thereby eliminating the need for clumsy homemade relay assemblies. Here's an example to illustrate how the Phonlink II works.

Let's suppose you're working late at the office and wish to turn on the exterior security lights of your home. You pick up the telephone, dial your home number and wait for Phonlink II to answer the phone. As its speech synthesizer prompts you, Touch-Tone enter your access code, then enter the control codes that instruct Phonlink II to turn on the security lights. Phonlink II verbally acknowledges your request, and outputs a control signal

FIG. 1-THE THREE 1 -ms BURSTS of 120 kHz frequency are precisely timed to coincide with the $60-\mathrm{Hz}$ line-voltage zerocrossover points.
over the 120 -volt AC power line in your home. That signal is received by the standard $X-10 \mathrm{AC}$ plug-in module, which connects power to the security lights.

$X-10$ plug-in modules

The Phonlink II output signals are
compatible with the standard $X-10$ Powerhouse code format, the de facto home-control communications standard. Most, if not all, of the household (power-line carrier) homecontrol systems use the X - 10 modules developed and manufactured by X-10 (USA), Inc., 185A LeGrand Ave., Northvale, NJ 07674, phone (201) 784-9700 or 1-800-526-0027. Compatible systems manufactured and supplied by X-10 (USA) are sold under the name of Radio Shack's Plug'n Power system, Sears' Home Comrol System, Leviton's Decora Electronic Controls, and Stanley's LighiMaker Home Controls, and many others.

$X-10$ Code transmission

Notice that there are two Phonlink II communication paths: First, there's

FIG. 2-THE ENCODED LOGIC depends on whether the three $120-\mathrm{kHz}$ bursts are impressed on the positive or negative side of the household voltage.

the communication between you and the Phonlink II system (which includes Touch-Tone telephone codes, and Phonlink II's voice-synthesized statements); then there's the control signals between the Phonlink II and the standard $X-10$ plug-in modules over the AC wiring. Let's now go into more detail on how the Phonlink II interacts with the $X-10$ plug-in modules.

As shown in Fig. 1, the Phonlink II encoded signals consist of a series of three $1-\mathrm{ms} 120-\mathrm{kHz}$ bursts, which are impressed onto the household singlephase $60-\mathrm{Hz}$ power line. Even though a typical residential home uses a sin-gle-phase electrical system, the $X-10$ PLI-513 module will impress a 120 kHz burst at what would be the zerocrossover points in a three-phase system; that's why the actual X - 10 code has three $1-\mathrm{ms} 120-\mathrm{kHz}$ bursts. In a three-phase electrical system, each phase is 120 degrees apart. However, a closer study of the three $60-\mathrm{Hz}$ phases will show that the actual zerocrossover points occur every 60 de-grees-for example, at exactly 0°, 60°, again at 120°, and so on.

Figure 2 shows a practical scheme for encoding data onto the singlephase $60-\mathrm{Hz}$ power line. A logic " 1 " is represented by three $1-\mathrm{ms} 120-\mathrm{kHz}$ bursts on the positive half cycle, followed by no bursts on the negative
half cycle. A logic " 0 " is represented by just the opposite. As shown in Fig. 3 , a complete instruction sequence consists of 11 cycles of the power line: 2 cycles for a start code, 4 cycles for the house code, followed by 5 cycles of number code, or 5 cycles of a function code. Each sequence is repeated to ensure reliability.

When Phonlink II transmits a complete command it takes a total of 44 cycles: two 11 -cycle sequences of number code, and two 11 -cycle sequences of function code. That selects the particular plug-in module, and what the module should do. The $X-10$ receiver modules require a silence of 3 cycles of the power line between each 11-cycle sequence of code.

Table 1 lists all the house codes, the number codes, and the function codes defined by the $X-10$ standard. Phonlink II uses house code F, number codes $1-5$, and function codes ON and OFF. The software allows the house code to be changed easily if necessary.

The PLI Module

Figure 4 shows the PLI-513 (Power Line Interface) module. The $X-10$ code transmissions must be synchronized to the zero-crossing point of the AC-power line. How that's done is quite simple. The PLI provides a zero-crossing reference signal ($60-\mathrm{Hz}$ square wave) through the black wire at pin 1, which is derived from an opto-coupler directly con-

FIG. 3-AN 11-BIT CODE is required to identify a X - 10 module.

FIG. 4-In (a), the PLI (Power Line Interface) module impresses the X-10 code onto household voltage, and communicates with the Phonlink II; (b) shows the PLI's modular phone-jack and AC wall plug, and (c) shows the PLI as viewed from the back.
nected to the AC line. (It is not desirable to derive the zero-crossing from a power-transformer's secondary because some phase shifting is likely to occur.) When Phonlink's II microprocessor detects the zero-crossing trigger, the software-generated X - 10 code will be sent through the yellow
wire to pin 4 of the PLI module. The PLI $120-\mathrm{kHz}$ oscillator is free-running, and is gated onto the AC line voltage (through an isolating tuned circuit) by the $X-10$ code signals.

The PLI has a power-on LED that also doubles as a transmission-status LED. The LED is normally on to indi-

TABLE 1

HOUSE CODES
A- 0110
B- 1110
C- 0010
D- 1010
E- 0001
F- 1001*
G- 0101
H- 1101

- 0111

J- 1111
K- 0011
L- 1011
M- 0000
$\mathrm{N}-1000$
O- 0100
P- 1100

NUMBER CODES
1- 01100*
2- 11100^{*}
3- 00100*
4- 10100^{*}
5- 00010*
6- 10010
7- 01010
8- 11010
9- 01110
10- 11110
11- 00110
12- 10110
13- 00000
14- 10000
15- 01000
16- 11000

FUNCTION CODES
ON- 00101*
OFF- 00111*
ALL ON- 00011
ALL OFF- 00001
DIM- 01001
BRIGHT- 01011
*Code used by PHONLINK II
NOTE: Receiver modules require a "silence" of at least 3 cycles of the power line between each instruction sequence.

PARTS LIST

All resistors are $1 / 4$-watt, 5% unless otherwise noted.
R1-100,000 ohms
R2-250 ohms, 1%
R3-10,000 ohms, 1%
R4, R17, R24, R27, R32, R34, R3510,000 ohms
R5-R9, R19, R36, R40, R42, R44, R46, R48, R50, R52- 33,000 ohms
R10, R15, R38-47,000 ohms
R11, R12, R14- 1000 ohms
R13, R20, R21-220,000 ohms
R16, R28, R54, R55-1 megohm
R18, R25-22,000 ohms
R22-330,000 ohms
R23, R30, R31, R33,-100,000 ohms
R26-100 ohms
R29-100 ohms, $1 / 2$-watt
R37-470 ohms
R39, R41, R43, R45, R47, R49, R51-51,000 ohms
R53- 39,000 ohms
R56-150 ohms

Capacitors

$\mathrm{C} 1, \mathrm{C} 6, \mathrm{C} 13-\mathrm{C} 15, \mathrm{C} 17-\mathrm{C} 22-.1 \mu \mathrm{~F}$, ceramic disc
$\mathrm{C} 2, \mathrm{C} 8, \mathrm{C} 10-1 \mu$, molded monolithic ceramic
C3, C4- $0.022 \mu \mathrm{~F}$, dipped-polyester film
C5, C11-10 $\mu \mathrm{F}$, 16 volts, dipped tantalum
C7-2.2 $\mu \mathrm{F}, 35$ volts, dipped tantalum
C9, C26-33 $\mu \mathrm{F}$, 16 volts, solid tantalum
$\mathrm{C} 12-0.1 \mu \mathrm{~F}, 200$ volts, orange-drop polyester film
C16-4700 $\mu \mathrm{F}, 16$ volts, electrolytic C23- $-470 \mu \mathrm{~F}, 16$ volts, electrolytic
C24, C25-22 pF, ceramic disc

Semiconductors

IC1-TMPZ84COOP, CMOS Z80 (Toshiba)
IC2-8255A, PIO
IC3-SPO256-AL2, speech synthesizer
IC4-74C04, hex CMOS INVERTER
IC5-74C02, quad CMOS NOR
IC6-27C64, 8K CMOS EPROM
IC7-74C32, quad CMOS OR gate
IC8-ADC0809CCN, A/D converter
IC9-LM324Z, precision current reference
IC10-M-956, DTMF decoder (Teltone)
cate the presence of power, and blinks off to indicate that a signal is being transmitted.
The power supply for the PLI is derived from a rectifier and capacitor filter that is directly referenced to the 120 -volt AC power line. The zero ref-

PARTS LIST

IC11, IC22-unused
IC12, IC15-TLC271, programmable op-amp
IC13-LM324, quad op-amp
IC14-4066, quad analog switch
IC16-IC19-4N32A, opto-isolator
IC20-LM7805CK, 5 -volt regulator, TO3 case
IC21-LM7805CT, 5 -volt regulator, TO220 case
BR1- 200 volts, bridge rectifier, $1 / 2$ amp
BR2-50 volts, bridge rectifier, $1 / 2$ amp
LED1-(Light Emitting Diode) red
D1, D3-D5-1N914, switching diode
D2-unused
D6-D8-1N5245B, 15 volt, $1 / 2$-watt Zener diode
Q1-2N2222, NPN small-signal transistor
Other components
F1-125 volts, $1 / 2 \mathrm{amp}$, pigtail !eads
MIC1- electret microphone (Radio Shack 270-092B or equivalent)
RY1-relay, 5 volts, 70 mA , (Radio Shack 275-243 or equivalent)
SO1-32-pin edge-card connector
SO2-16-pin DIP socket
T1- 12.6 volts, 0.6 amp (Tria F-158XP)
XTAL1, XTAL2-3.58 MHz
Modification parts
Q2-2N2222A transistor
R57-5600 ohms, $1 / 4$-watt resistor
R58-3300 ohms, $1 / 4$-watt resistor
IC6-27C64 EPROM (KPL-3A)
PLI-(Power Line Interface) X-10 (USA) Model PL513
Note: The following items are available from STG ASSOCIATES, 2705-B Juan Tabo Blvd., N.E. \# 117, Albuquerque, NM 87112: modification kit to update PHONLINK to PHONLINK II (MKPL-1), \$30; PHONLINK II complete updated kit, all parts, cabinet and documentation (KPL-1A), \$220; updated PC board only (KPL-2A), \$36; programmed EPROM (KPL-3A), 19 ; source code print out (KPL-4A), \$10; Please add 5% for postage and handling (10% Foreign). New Mexico residents add appropriate sales tax.
erence in the PLI is directly connected to the 120 -volts AC. DC isolation is one reason why opto-couplers are used between the PLI and Phonlink II connections. Therefore: For safety, an isolating transformer must be used (between the PLI and the AC line)

FIG. 5-A Z80 MICROPROCESSOR (IC1) is used as a system controller with its programming contained in an EPROM (IC6).
when attempting any internal PLI measurements. The isolating transformer, together with the PLI's diode rectifier and capacitor filter will provide a stable reference ground; that way, there can be no confusion as to which side is ground and which side
is power. It's easy to be confused about which side is ground, because the PLI-513 module can easily be plugged in upside down, or your household wiring to that outlet may be wired backwards.

The $X-10$ code format is patented.

However, in order to encourage others to take advantage of the large installment base of X-10 modules, and develop their own systems to control X-10 modules, X-10 (USA), Inc. offers the PL-513 as a cost-effective way of coupling X - 10 -compatible signals onto the AC power line. License to transmit the $X-10$ code format is granted to purchasers of the $X-10$ Power Line Interface. The PL-513 relieves the OEM (Original Equipment

Manufacturer) from any UL (Underwriters Laboratory) considerations as all power-line connections are taken care of by X-10 (USA), and all connections between the PL-513 and the OEM equipment are opto-coupled.

Circuit description

Figure 5 shows that the Phonlink II is controlled by a Z 80 microprocessor (ICl) with its program code stored in an 8 K -byte EPROM (IC6). The
 DTMF decoder (IC10) are shown here.

8255A PIO (Parallel Input Output) contains three 8 -bit ports that interface digital I/O circuits from the real world to the microprocessor.

In Fig. 6, the speech synthesizer SPO256 (IC3) works by storing the fundamental sounds of speech called phonemes. The microprocessor causes the speech synthesizer to output individual phonemes along with their appropriate delays to form complete words and phrases. The speech synthesizer, DTMF (Dual Tone Multi-Frequency) M-956 (IC10), and also the built-in electret microphone (MICl) all interface to the telephone line via a 4066 analog switch (IC14), and a few op-amps, opto-isolators, and a bridge rectifier.

The ADC0809 (IC8) analog-todigital converter has eight analog inputs: Seven inputs are user-definable; however, the eighth is connected to a built-in temperature reference, IC9, an LM334. Just call your home, ask Phonlink II for the room temperature by keying in the correct function code, and a digitally synthesized voice will tell you the temperature. That's a great feature if you're worried about your water pipes freezing in the winter; or better yet, keeping a certain room in your home cool during the summer months for your loving pet, who you'd like to pamper. It's a comfort to know that you can control almost everything while away from home through any Touch-Tone phone.

The A/D converter is a successiveapproximation type with a resistor voltage-divider connected to each of the first seven inputs (pins 1-4 and 26-28). The divider ratio will allow the Z80 to translate a $0-5$-volt input to a 1-100 percent output. For other in-put-voltage ranges, those resistors must be changed accordingly.

In Fig. 7, the bridge-rectifier BR1 will provide a positive and negative voltage output in the proper orientation regardless of whether the tip and ring phone lines are connected in backward or forward. Relay RY1 serves as the hook switch, which is equivalent to the cradle switch on any telephone. The relay is controlled by Q1, which in turn is controlled via the PIO by the Z80. When the relay is engaged, the output of the speech synthesizer is optically coupled through IC19, which impresses an audio signal onto the DC-biased bridge rectifier. The audio then travels out the phone line.

FIG. 7-TELEPHONE-LINE INTERFACE CIRCUITS use opto-couplers, a relay, bridge rectifier, and several op-amps. There are separate power supplies for the digital and analog circuits.

Telephone-line isolation is achieved through using opto-isolators. For example, opto-isolator IC16 and its associated passive components comprise the ring detector. Each time a ring occurs, it causes a negative-going pulse at IC16 pin 5, which is applied to IC13 pin 2. The output of that op-amp is then applied to the PIO, where it can be detected by the Z 80 microprocessor.
The purpose of opto-coupler IC18 is to detect the disconnect pulse from the telephone exchange if the caller
decides to hang up. That pulse sends an interrupt to the microprocessor, which then terminates the communication.
A closed-loop feedback circuit is composed of IC12, IC17, IC19, IC13c, and the C9/R16 low-pass filter helps stabilize the sensitive op-amp circuitry and compensate for changes in circuit parameters that may be caused by slight variations in component temperatures.
Notice that there are two separate 5 -volt power supplies: one for the ana-
\log and one for the digital circuits. Now you know why the power connections to some IC's in the previous figures are labeled $\pm V_{D}$ and others labeled $\pm \mathrm{V}_{\mathrm{A}}$. The analog and digital ground are connected together only at one point; otherwise, the analog and digital grounds use separate runs around the board.

That's all we have space for now. However, we'll continue next month with a discussion on the software, and the modifications necessary to get Phonlink II up and running. R-E

For SUCCESS in your Vocation or Profession LEARNING is Where It's At!

You'll need a "Learning Environment" in your home (or office) to work on your degree with "the college that comes to you," GRANTHAM COLLEGE OF ENGINEERING

Grantham makes your understanding of electronics and computers its most important teaching objective. You are never rushed or held back; you study at your own pace. Learn more by self-paced home study, with Grantham instructors standing by to help you.

Accredited
 A.S. and B.S. Degrees Awarded

Phone or write for our Home Study Degree Catalog:
Phone 213-493-4421 (no collect calls) or write

Grantham College of Engineering 10570 Humbolt Street
Los Alamitos, California 90720

BUTMリD TFMIS

FOR CONVENTIONAL ALL－FREQUENCY SHORT－WAVE RECEP－ tion，the general rule is＂the longer the antenna the stronger the received signal．＂Unfortunately，between nasty neigh－ bors，restrictive housing rules，and real－estate plots not much larger than a postage stamp，a short－wave antenna often turns out to be a few feet of wire thrown out the window－rather than the 130 feet of long－wire antenna we would really like to string between two 50 －foot towers．

Fortunately，there＇s a convenient alternative to the long－ wire antenna，and that＇s an active antenna；which basically consists of a very short antenna and a high－gain amplifier．

The concept of an active antenna is fairly simple． Since the antenna is physically small，it doesn＇t inter－ cept as much energy as a larger antenna，so we simply use a built－in RF amplifier to make up for the apparent signal＂loss．＂Also， the amplifier provides impedance matching，because most receivers are designed to work with a 50 － ohm antenna．

Active antennas can be built for any frequency range，but they are more commonly used from VLF（ 10 kHz or so）to about 30 MHz ．The reason for that is because full－size antennas for those frequencies are often much too long for the available space．At higher frequencies， it is quite easy to design a rela－ tively small high－gain antenna．

The active antenna shown in Fig． 1 provides $14-20 \mathrm{~dB}$ gain at the popu－ lar short－wave and radio－amateur fre－ quencies of $1-30 \mathrm{MHz}$ ．As you would expect，the lower the frequency the greater the gain．A gain of 20 dB is typical from 1－18 MHz ，decreasing to 14 dB at 30 MHz ．

Circuit design

Because antennas that are much short－ er than $1 / 4$ wavelength present a very small and highly re－ active impedance that is dependent on the received frequency， no attempt was made to match the anten－ na＇s impedance－it would prove too diffi－ cult and frustrating to match impedances

When fate or nasty neighbors prevent you from stringing a long－wire receiving antenna，you＇ll find that this pocket－size active antenna will give the same，or even better，reception．

FIG. 1-THIS ACTIVE ANTENNA provides between 14- and $20-\mathrm{dB}$ gain over the range of 1-30 MHz.

FIG. 2-THE GROUND CONNECTION for J 1 is the metal cabinet. The cabinet is connected to the PC board's ground by the metal spacers at each mounting screw.

Construction

The amplifier for the prototype unit uses a printed-circuit board, for which a template is provided in "PC Service." The amplifier can be assembled on a perforated wiring board, but because there is some sensitivity to the parts layout, we strongly suggest that you use a PC board for best results.

The parts-placement diagram is shown in Fig. 2. Take note that although the battery's negative (ground)
lead is returned to the PC board, out-put-jack J1 has a connection to the cabinet ground. The ground connection between the PC board and the cabinet is made through the metal standoffs or spacers that are used to mount the PC board in the cabinet. Do not substitute plastic standoffs or spacers because they won't provide a ground connection between the PC board, the cabinet, and J1. If you decide to use a plastic cabinet to house the amplifier, make certain that Jl's ground connection is returned to the ground foil running around the edge of the PC-board.

A telescopic antenna mounts in the center of the PC board. From the foil side of the board, pass its mounting screw through the hole in the PC board and then solder the head of the screw to its foil pad. For both insulation and support, use a plastic or rubber grommet between the antenna and the hole in the cabinet's cover through

FIG. 3-THE AMPLIFIER IS SO SMALL that it almost gets lost in a 4 -inch $\times 4$-inch metal cabinet. The battery is held in place with a U-clamp. The output jack is anything that matches the receiver's antenna connection.

PARTS LIST

Resistors $1 / 4$-watt, 10%
R1-1 megohm
R2, R10-22 ohms
R3, R11-2200 ohms
R4-22,000 ohms
R5- 10,000 ohms
R6, R9- 1000 ohms
R7- 3300 ohms
R8-470 ohms
Capacitors rated at least 16-WVDC
C1, C3-470 pF
C2, C5, C6- $0.01 \mu \mathrm{~F}$
C4 $-0.001 \mu \mathrm{~F}$
C7, C9- $0.1 \mu \mathrm{~F}$
C8-22 $\mu \mathrm{F}$, electrolytic
Semiconductors
Q1-FET, MPF102 or 2N3918 (see text)
Q2, Q3, Q4-NPN transistor, 2N3904, or equivalent

Other components

B1-9-volt battery
J1-Jack to match receiver cable
S1-SPST switch
ANT-Telescopic antenna or wire
Miscellaneous: Cabinet, printed-circuit materials, solder, etc.
Note: The following can be ordered from Q-Sat, P.O Box 110, Boalsburg, PA 16827: A printedcircuit board, $\$ 6$ plus $\$ 1$ shipping and handling; a complete kit (less case, switch, battery, and connectors), \$15 plus \$2 shipping and handling. Pennsylvania residents must add appropriate sales tax.
which the antenna passes. In a pinch, several turns of a good-quality plastic tape wrapped around the antenna's shaft can be substituted for the rubber grommet.

If you decide to make provision for a wire antenna, install a 5 -way binding post on the cabinet. Then, be sure to connect a short length of wire between the antenna's foil pad and the binding post.

Modifications

If you are interested in a smaller frequency range than $1-30 \mathrm{MHz}$, resistor R1 can be replaced with an LC circuit tuned to the center of the desired range. The LC circuit will also improve the rejection of signals outside your range of interest, but remember that it won't improve the gain of the amplifier.

If your particular interest is the very-low frequencies (VLF), the amplifier's low-frequency response can

New! NRI course in Cellular Telephone Installation and

 Servicing prepares you to succeed in today's fastest-growing communications fieldCellular business is big business!
In the few short years since the first commercial cellular telephone system went on-line, over $1,000,000$ people have signed up for service in more than 120 cities nationwide. Today, the industry is growing at an incredibly fast 4\% a month, and experts predict that by 1991, at least 85% of the United States will be covered for cellular service. Better yet, by 1993 total industry revenues will exceed $\$ 10,000,000,000$-making cellular the fastest growing electronics communications field today.

For you, that means extraordinary career and money-making opportunities. Get a fast start today with NRI's hot new course in Cellular Telephone Installation and Servicing.

See how far you can go!

Help wanted! Urgent demand for field technicians who can install and test new cellular telephone equipment!
Get the skills, knowledge, and confidence to install and test cellular telephone equipment, and you can name your price in this exploding new job market. Cellular system developers, retailers, and service providers-all on the ground floor of an industry that's still so young and growing so fast-are all willing to pay a premium for anyone trained to service this brand-new equipment.

Now, with NRI, you can take full advantage of every exciting opportunity in today's-and tomorrow's-booming field of cellular communications.

Exclusive hands-on training includes high-performance mobile cellular telephone you keep

Your NRI course starts with the electronics fundamentals you need to understand and service all telephone systems, then walks you step by step through the installation, troubleshooting, and repair of popular telephone systems in use today.

But that's just the beginning. With a solid conventional phone servicing foundation behind you, you're ready to build your expert understanding of the cellular telephone systems moving fast into communities all over the U.S.

Following complete, easy-to-read guidelines, you install a fullfeatured mobile cellular telephone in your own car, then take it through a series of diagnostic tests to become fully acquainted with its operating functions. Best of all, if you live in an area already offering
cellular coverage, NRI will help you actually go on-line with up-to-date, expert advice on choosing the best and most affordable cellular service available.

Send for your FREE catalog today

For all the details about NRI's exclusive new training, send the coupon today. You'll receive a complete catalog describing NRI's Cellular Telephone Installation and Servicing course plus NRI courses in other hightech, in-demand fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, Washington, DC 20008.

Send Coupon Today For Free Catalog!

Popular Plectronics is back

Exciting Features, Projects, Reports, \& Columns EXECUTIVE'S DING-A-LING
 - DIAL-UP RESISTANCE BOX

This attention-getting do-nothing is just the ticket for the executive who has everything.

A must designer's aide for every experimenter's workbench.

- STUDENT'S METAL DETECTOR

Use this circuit to learn how metal detectors work, then use it to find some buried treasure!

The next me you're ing the quarters you'll be glad you have this accessory in your rear window.
be improved by increasing the values of capacitors Cl and C3. (You'll have to experiment with the values.)

Although a 9-volt battery is the recommended power source, the amplifier should work well using 6-15 volts. The inside of the cabinet of the completed prototype, using a 9 -volt battery as the power supply, is shown in Fig. 3.

Troubleshooting

Circuit voltages for a 9 -volt power supply are shown in Fig. 1. If the voltages in your unit differ by more than 20% from those in the schematic, try changing resistor values to get the voltages in their proper range. For example, if the voltage drop across R8 measures only 0.3 volt, you must decrease R4's value (the exact value is up to you to figure out) in order to increase Q3's base voltage and collector current.
The only critical voltages are those across R3 and R8. Performance should be fine if they are even close to the values on the schematic. If you decide to operate the amplifier from other than 9 volts, the values of R3 and R4 must be modified to obtain the indicated voltages.
Since it's almost impossible to measure the voltage from the gate to the source (VGS) of an FET, you can measure the voltage that is present across R3, because it is the same as VGS. Adjust R3's value accordingly, if the voltage is not within the range of $0.8-1.2$ volts.

Limitations

Use of the amplifier above 30 MHz is not recommended because of sharply reduced gain. While operation above 30 MHz can be accomplished by using tuned circuits in place of the resistive loads, that modification is beyond the scope of this article. Therefore, such modifications are purely experimental.

Take care when handling the FET (Q1). A common belief is that FET's and CMOS devices are safe from static damage after having been installed in a circuit, or after being mounted to a PC board. Although it's true that they are better protected from static electricity when installed in a circuit, they are still susceptible to damage by static; so never touch the antenna before discharging yourself to ground by touching some grounded metallic object.

BUITD THIS
 CARRIER CURRENT RECEIVER

LAST MONTH WE WENT OVER the operating theory of a car-rier-current transmitter, and then showed you how to build one. Now we will describe two receivers that can be used with that transmitter. One receiver is a simple AM unit, best suited for applications where some noise can be tolerated (such as speech), and the other one is for wideband FM use. Both receivers have an output that can be connected directly to a speaker.

AM receiver

Figure 1 shows the AM-receiver schematic. It is a TRF- (Tuned Radio Frequency) type receiver, meaning that there is no signal mixing or heterodyning; the unit is tuned only once upon calibration, and then left alone. It has a sensitivity of about 1 millivolt at the input for an audio output of $1 / 2$ watt.

Capacitor C22 couples audio signals from the power line to the PC board-it must be rated at 600 -volts DC. R8 will cause F1 to blow if C22 shorts. As another safety precaution, the chassis of the unit must be grounded. If an older two-wire electrical system is used, the receiver must be grounded to a cold-water pipe.

The signal from C22 goes to a tuned network (C1-C5 and L1 and L2) that has a $20-\mathrm{kHz}$ bandwidth, which allows only the desired signal to pass through. A jumper (J) between the line (antenna) and the input network can be removed for reception of very strong signals if distortion (overload) becomes a problem.

ICl is a "gain block" IF chip, normally used for TV IF applications, but it is useful at low frequencies as well. It has AGC (Automatic Gain Control) capability and approximate-

WILLIAM SHEETS and RUDOLF F. GRAF

ly 60 dB of gain. Components C 8 , C 9 , and L3, which are placed across the output of ICl , are broadly resonant around 280 kHz . C10 couples RF to detector-diode D1, which is used as an envelope detector.

AGC, which keeps the receiver output relatively constant, is obtained in the following manner: The cathode of D1 is connected to the variable resistor R5. A voltage from 4 to 6 volts appears on the cathode of D1 even with no received signal. When a signal is received, the DC voltage at the anode of D1 increases. That DC voltage appears across C14 (the detector output), and is then fed through R3 and C13, which remove audio components, to the base if Q1. The voltage at the emitter of Q1 is fed to pin 5 of IC1. A more positive voltage tends to reduce the gain of ICl , which in turn reduces the signal fed to D1 and subsequently the DC voltage at pin 5 .

Complete your

carrier-current

audio system with an
AM or FM receiver.

The detector output is taken from C14, which sets the upper frequency limit at about 10 kHz or so. By reducing the value of Cl 4 , a higher frequency response can be obtained; but using the FM receiver, which will be described later, is a better approach. The detector output is connected to an external jack. Audio components are fed to audio-gain control R6, through C16 to IC2, an audio amplifier. C 18 couples up to $1 / 2$-watt of audio to an external speaker.

Power for the AM receiver is supplied via T1, D2, and IC3. The power supply formed by those components provides a regulated 12 -volts DC across C19.

FM receiver

The schematic of the FM receiver is shown in Fig. 2, and it operates as follows: Input signals from the power line are coupled through C23 and R19 to the input filter network. As with the AM transmitter, C23 must be rated at 600 volts. Switch S2 is used as an attenuator. It is provided to prevent receiver overload in case it is located too close to the transmitter. Signals above about 500 kHz are rejected by C 1 , which reduces the tendency for the filter network to "leak" signals at frequencies far above the passband. Components C2-C7, L1-L3, and R1 and R20 form a triple-tuned bandpass filter having a passband from 220-340 kHz . Signals from the filter are fed to pin 4 of IC1, an MC135OP "gain block" IC, which is used as a tuned RF amplifier. C8 and C9 provide internal bypassing for the chip. R2 biases ICl so that it operates at maximum gain. An amplified signal appears at pin 8 of ICl. L4 provides DC bias and high RF impedance to $\operatorname{pin} 8$, and D1 and D2 provide amplitude

Electronics Engineers \& Designers!

books for only $\mathbf{~}^{1} 95$ $\binom{$ values to }{$\$ 141.90}$

 Quality, Affordable Professional Books
COMPUTER SCIENCE

3028
Hands-on guide to explore the power of batch file programming under PC-DOS, MS-DOS, and OS/2. 320 pp .

9832
$\$ 36.95$
An in-depth, essential guide bringing together VLSI and Image Processing. 326 pp .

2888
How computer networks work, how to make them work for you. 340 pp.

9762P The classic definitive work on the IBM PC-fully revised and enlarged. 387 pp .

2989
An authoritative tutorial on the bestselling computer-aided design software. 296 pp .

9829
An inclusive overview for electronics engineers and computer scientists. 248 pp .

ENGINEERING MATH

1962 $\$ 22.95$ reference to basic electronics math usage. 256 pp .

ELECTRONIC CIRCUITS

2920
600 diagrams, schematics, and tables showing IC circuits.
352 pp.

9825
$\$ 49.95$ soldering and cleaning printed circuit boards. 430 pp .

1938
$\$ 60.00$
Over 1,300 useful and versatile electronic circuit designs. 768 pp. Counts as two.

2962
$\$ 24.95$
Complete schematic diagrams parts lists, and photos for build ing a variety of projects. 296 pp .

3015
\$34.95
A detailed look at the technical and marketing aspects of ISDN 352 pp. Counts as two.

2697 eady-to-run math programs \& subroutines for scientists and engineers. 304 pp .

$\begin{array}{r}\$ 24.95 \\ \hline\end{array}$

2727 102 illustrations, step-by-step Perform complex calculations methods for solving real-world with simple analog circuits. partial and
560 pp .
 560 pp.

STATE－OF－THE－ART

ELECTRONIC COMPONENTS

9820 Covers transistor and thryistor circuits for power electronics systems． 324 pp ．

2672 Linear integrated circuits－specifications，prices \＆data． 614 pp．Counts as two．

3002 Fast，accurate information guaranteed to simplify your search for the right IC． 624 pp．Counts as two．

REFERENCE

2900 ＂An excellent dictionary for all levels of users，from the hobbyist to the researcher．＂

2958 ＂A rich fund of reliable，easy－to－use data ．．．＂－Engineering Societies Library， 560 pp．Counts as two．

2785 Easy－to－use reference to 160 electronic principles：ac／dc，solid－state，oscilla－ tors，amplifiers and radio communications． 620 pp ．Counts as two．

How the Club Works

YOUR BENEFITS：You get 3 books for $\$ 1.95$ plus shipping \＆han－ dling when you join．You keep on saving with discounts up to 50% as a member．

YOUR PROFESSIONAL BOOKSTORE BY MAIL：Every 3－4 weeks， you will receive the EE\＆D Book Club News describing the Main Selec－ tion and Alternates，as well as bonus offers and special sales，with hundreds of titles to choose from．

AUTOMATIC ORDER：If you want the Main selection，do nothing and it will be sent to you automatically．If you prefer another selection， or no selection at all，simply indicate your choice on the reply form provid－ ed．As a member，you agree to purchase at least 3 books within the next 2 years and may resign at any time thereafter．

BONUS BOOKS：Starting immediately you will be eligible for our Bonus Book Plan with savings of up to 80% off publishers＇prices．

IRONCLAD NO－RISK GUARANTEE：If not satisfied with your books，return them within 10 days without obligation！

EXCEPTIONAL QUALITY：All books are quality publishers＇editions especially selected by our Editorial Board．

All books are hardcover unless number is followed by a＂P＂for paperback．（Publishers＇Prices shown） C1909 EEDBC，Blue Ridgo Summit，PA 17294－0860

ELECTRONICS ENGINEERS \＆DESIGNERS BOOK CLUB®
 Blue Ridge Summit，PA 17294－0860

YES！Please accept my membership in the Electronics Engineers \＆ Designers Book Club ${ }^{\circ}$ and send me the volumes I have listed below， billing me only $\$ 1.95$ plus shipping and handling charges．I understand that the books are sent on a 10－Day Free Examination basis．If dissatis－ fied in any way，I may return the books within 10 days and incur no further obligation．Otherwise，I agree to pay the enclosed invoice prompt－ ly and to receive regular club bulletins as described in＂How the Club Works．＂To complete my membership obligation I need only purchase 3 additional books at regular members＇prices during the next 2 years， and may resign at any time thereafter．

NAME
ADDRESS
CITY
STATE \qquad ZIP \qquad PHONE

SIGNATURE
Valid for new members only．Foreign applicants will receive special ordering instructions．Canada must remit in U．S．funds．This order is subject to acceptance by the Electronics Engineers \＆Designers Book Club＊ DRE289

PARTS LIST

AM RECEIVER

All resistors are $1 / 4$-watt, 10%, unless otherwise noted.
R1- 4700 ohms
R2- 1000 ohms
R3- 47,000 ohms
R4, R8- 47 ohms
R5- 10,000 ohms, potentiometer
R6- 50,000 ohms, potentiometer
R7- 10 ohms
R9-680 ohms
Capacitors
C1, C5-33 pF, NPO
$\mathrm{C} 2, \mathrm{C} 4-3-40 \mathrm{pF}$ trimmer
C3- 3 pF , NPO
C6, C7, C17- $0.1 \mu \mathrm{~F}, 50$ volts, Mylar
C8, C9-330 pF, NPO
C10, C14, C21- $0.01 \mu \mathrm{~F}$, disc
C11, C15- $10 \mu \mathrm{~F}, 16$ volts, electrolytic
C12, C13, C16- $1 \mu \mathrm{~F}, 50$ volts, electrolytic
C18- $470 \mu \mathrm{~F}, 16$ volts, electrolytic
C19, C20-2200 $\mu \mathrm{F}, 16$ volts, electrolytic
C22- $0.1 \mu \mathrm{~F}, 600$ volts
Semiconductors
IC1-MC1350P gain block IF
IC2-LM386 audio amplifier
IC3-LM7812 12-volt regulator
D1-1N914B silicon diode
D2-1N4002 or 1N4007 rectifier diode
LED1-red light-emitting diode
Q1-2N3565 NPN transistor Other components
L1, L2, L4-4.7 mH inductor L3- $470 \mu \mathrm{H}$ inductor

F1-1-amp fuse
S1-SPST switch
T1-12-volt, $450-\mathrm{mA}$ transformer J1-J4-RCA jack
Miscellaneous: PC board, cabinet, hardware, grounded AC line cord, etc.

PARTS LIST FM RECEIVER

All resistors are $1 / 4$-watt, 10%, unless otherwise noted.
R1, R10-15,000 ohms
R2, R4-R7, R17-4700 ohms
R3, R19-47 ohms
R8, R15- 10,000 ohms
R9- 10,000 ohms, potentiometer
R11-2200 ohms
R12-22 ohms
R13- 10 ohms
R14, R20- 22,000 ohms
R16-100,000 ohms
R18-50,000 ohms, potentiometer
R21-680 ohms
Capacitors
C1- $0.0015 \mu \mathrm{~F}, 50$ volts, Mylar
C2, C4, C6-56 pF, NPO
C3, C5-24 pF, NPO
C7-150 pF, NPO
C8, C9, C22- $0.1 \mu \mathrm{~F}, 50$ volts, Mylar
$\mathrm{C} 10, \mathrm{C} 17, \mathrm{C} 18-1 \mu \mathrm{~F}, 50$ volts, electrolytic
C11, C24, C26, C27-0.01 μ F, disc
C12, C13- $10 \mu \mathrm{~F}, 16$ volts, electrolytic
C14, C29-0.001 $\mu \mathrm{F}, 50$ volts, Mylar
C15-47 pF, NPO
C16- $0.01 \mu \mathrm{~F}$, Mylar
C19, C20-470 $\mu \mathrm{F}$, 16 volts, electrolytic

C21- $0.0033 \mu \mathrm{~F}, 50$ volts, Mylar
C23- $0.1 \mu \mathrm{~F}, 600$ volts
C25, C28- $2200 \mu \mathrm{~F}, 16$ volts, electrolytic

Semiconductors

IC1-MC1350P gain block IF
IC2-LM565 PLL detector
IC3-LM386 audio amplifier
IC4-LM7812 12-volt regulator
D1, D2-1N914B silicon diode
D3-D6-1N4002 rectifier diode
LED1-red light-emitting diode
Q1, Q2-2N3565 NPN transistor
Other components
L1-L4, L6- 4.7 mH inductor
L5- $470 \mu \mathrm{H}$ inductor
F1-1-amp fuse
S1, S2-SPST switch
T1-12-volt, $450-\mathrm{mA}$ transformer
J1, J2—RCA jack
Miscellaneous: PC board, cabinet, hardware, grounded AC line cord, etc.
Note: The following items are available from North Country Radio, P.O. Box 53, Wykagyl Station, New Rochelle, NY 10804. A kit of parts containing a PC board and everything that is installed on it; For the AM receiver: $\$ 28.50$. For the FM receiver: $\$ 38.50$. A PC board for either receiver is available for $\$ 10.00$ each. Add \$2.50 to any order for postage and handling. NY residents must include sales tax.

FIG. 1-THE AM RECEIVER. Shown here is the complete, and rather simple circuit, which is best suited for receiving speech.

FIG. 2-THE FM RECEIVER. This receiver is slightly more complex than the AM receiver.
limiting of the FM signal. C10 and R3 form a decoupling network, and C11 couples the signal from IC1 to IC2, and also blocks DC.

IC2, an LM565 PLL, is used as an FM demodulator. Pins 8 and 9 are connected to an internal VCO (Voltage C ontrolled O scillator), and components R9, R10, and C15 set the VCO's free running frequency. The output of the VCO appears at pin 4, and is fed right back in to pin 5 , which is the input to the internal phase detector (the test point between those two pins is used for setting the PLL's VCO frequency- 280 kHz in this application). The VCO signal and the input signal (from pin 2) are compared in the phase detector. The output from the phase detector is internally amplified, and then appears at pin 7. The output at pin 7 is a replica of the original modulation on the FM input

FIG. 3-AM PARTS PLACEMENT. Follow this diagram when building the PC board for the AM receiver.
signal to the receiver, the output (pin 7) is therefore the recovered audio. (The outputs from pins 6 and 7 are externally available for future interface purposes.)

The detector output at pin 7 is cou-
pled to Q1 and R11. Components C16, C29, and L5 form a low-pass filter that eliminates $280-\mathrm{kHz}$ components from IC2's output. C17 and R14 couple audio to the base of Q2, which, in conjunction with R15, R16, R17, and

C18, form an audio amplifier that brings the recovered audio up to around 1 -volt peak-to-peak. R18 is a volume control, and L6 and C27 suppress any remaining $280-\mathrm{kHz}$ components. The signal is then fed into IC3, an LM386N audio amplifier, which can deliver up to $1 / 2$-watt of audio, coupled via C20, to any standard 8ohm external speaker.

A power supply for the FM receiver is made up of T 1 , a bridge rectifier made up of D3-D6, and the 12 -volt regulator, IC4. The power-supply requirements concerning ripple and noise are more stringent for the FM receiver than the AM receiver.

Construction

The Parts-Placement diagrams for the AM and FM receivers are shown in Figs. 3 and 4 respectively. You can build the receivers using PC boards made from the foil patterns given in PC Service, or else by using the ready-made PC boards that are available from the source mentioned in the Parts List. Complete parts kits containing all components that mount on the PC boards are also available from that same source for either receiver. Otherwise, all of the components, with the exception of the chokes and coils, are readily available from many suppliers. Of course you only need

FIG. 4-FM PARTS PLACEMENT. Follow this diagram when building the PC board for the FM receiver.

FIG. 5-THE PC BOARD for the AM receiver is installed inside the cabinet as shown. Notice the components that are not on the PC board.
the parts for one of the receiverseither AM or FM, unless you want to build both.

Following Figs. 3 and 4 as a guide, start by first installing the fixed resistors, and then the capacitors. Next, install the coils and potentiometers, and the IC's last. It's always a good idea to leave the IC's for last, as they are susceptible to static damage. Use only rosin-core solder, and be sure to carefully inspect the PC board for shorts, solder bridges, and poor solder joints before applying power. All components that are not mounted on the PC board should be mounted to the chassis or soldered onto a terminal strip, as shown in Figs. 5 and 6. In the FM receiver, as you can see from Fig. 6, voltage-regulator IC4 is actually heat-sinked by mounting it to the bottom surface of the metal cabinet; IC4 is electrically grounded to the cabinet as well.

Checkout

The following checks should be made before power is applied to either board:

AM receiver

- Check all coils for DC resistance: L1, L2, and L4 should be 48 ohms, and L3 should be 22 ohms.
- IC2, pin 6 to ground: 500 ohms or more (after 10 seconds).
- IC2, pin 5 to ground: 10 K or more. - IC1, pins $1,2,4-6$, and 8 to ground: no shorts (should read more than 500 ohms).
- Make sure that D1 and D2 are correctly polarized.

Set all potentiometers at halfway, apply DC power, and check for the following positive voltages (all measurements are made with respect to ground):

- Across C20: 16 volts.
- Across C19: 12 volts.
- IC2 pin 5: 6 volts.
- IC1 pins 1,2 , and $8: 11.8$ volts.
- Q1 collector: 11 volts.
- Q1 emitter: 6 volts (varies with R5).
- IC1 pin 5: 5 volts (varies with R5).

FM receiver

- Check all coils for DC resistance: L1-L4 and L6 should be 48 ohms, and L5 should be 22 ohms.
- IC3 pin 6 to ground: more than 500 ohms (after 10 seconds).
- IC3 pin 5 to ground: more than 10K.
continued on page 94

$10-\mathrm{MHz}$ FREQUENCY STANDARD

Here's an economical frequency standard that you can build to calibrate your test equipment.

YOUR FREQUENCY COUNTER IS GOING TO need calibration-if not today, then in the near future. That's also true for any test instrument that uses a built-in reference oscillator, such as an oscilloscope or signal generator. Calibration means adjusting the instrument's built-in reference oscillator until it matches a known frequency standard. Unfortunately, a highly accurate frequency standard, such as one traceable to the National Bureau of Standards, NBS, is far beyond the budget of most technicians and electronics hobbyists.

With the absence of an NBS-traceable standard, hobbyists usually decide to calibrate their frequency counters against a similar working model. After several calibrations, usually one against another, the law of averages dictates that eventually a frequency counter will end up calibrated to itself. The end result is that no standard at all is being maintained.

The frequency standard detailed in this article resolves the dilemma by providing a calibrator that is accurate, inexpensive, and simple enough to build. The calibrator's output is a $10-$ MHz square wave that is phase-lock-
ed to the WWV $10-\mathrm{MHz}$ radio transmission that's traceable to the NBS in Boulder, Colorado. And, if you want more versatility, later on we'll show you how to modify the unit to phaselock on to the WWV $2.5-\mathrm{MHz}$ and $5-$ MHz radio transmission.

Theory of operation

Figure 1 is a block diagram of our $10-\mathrm{MHz}$ frequency standard. It consists of a Time Kube superheterodyne AM radio which contains an RF amplifier, a mixer, a local oscillator, two IF amplifiers, a detector, and an audio amplifier. We add to that a circuit containing a mixer and PLL. (We'll call that circuit our "main circuit.")

Let's take a closer look at each stage of the radio receiver. The incoming WWV $10-\mathrm{MHz}$ signal is amplified in the RF amplifier stage, and then sent to the mixer stage where it is combined with the $10.455-\mathrm{MHz}$ output from the local oscillator. Because the mixer is a non-linear device, the two frequencies are heterodyned together creating two additional frequencies in the output; the sum frequency of 20.455 MHz , and the difference frequency 0.455 MHz (or

455 kHz), which is the one we are most interested in (see Table 1). The IF frequency is chosen to be 455 kHz , and the local oscillator is designed to operate 455 kHz above the frequency that's being received.

The purpose of the IF amplifiers is to select out, and amplify, only the difference signal at 455 kHz . The output of the second IF amplifier will be a narrow band of frequencies centered around 455 kHz , which contains all of the audio information present in the original transmission. The IF is then detected, amplified, and heard over the speaker.

Although the WWV $10-\mathrm{MHz}$ incoming frequency to the RF amplifier is extremely accurate, the $455-\mathrm{kHz}$ IF frequency is only as stable as the local oscillator. That means: If the local oscillator drifts 100 Hz off frequency, the center frequency of the IF will also drift 100 Hz off frequency. Although that amount of drift is acceptable as far as listening to audio is concerned, the IF frequency is not accurate enough to be used as a frequency standard unless the drift is compensated for.

As shown in Fig. 1, the main circuit

FIG. 1-THIS IS A BLOCK DIAGRAM OF the Time Kube radio and the main circuit. However, you can use any superheterodyne AM radio capable of receiving WWV's radio transmissions.

FIG. 2-SCHEMATIC OF THE $10-\mathrm{MHz}$ FREQUENCY STANDARD. FET's Q1 and Q2 are installed inside the radio, and the rest of the components are installed on the main board.
consists of a balanced modulator, which is a type of mixer, and a phaselocked loop. Those two stages cancel any frequency error caused by drifting of the local oscillator, and recreates a signal as accurate as the original WWV $10-\mathrm{MHz}$ signal. For example, if the local oscillator drifts up 100 $\mathrm{Hz}(10.456 \mathrm{MHz})$, and then heterodyned with the $10-\mathrm{MHz}$ WWV signal, the IF-difference frequency will
now be 456 kHz . When the new IF and local oscillator frquency are heterodyned in the balanced modulator $(10.456 \mathrm{MHz}-0.456 \mathrm{MHz})$, the result is still 10 MHz . In that manner, the balanced modulator will cancel out any drifting in the radio's local oscillator.
The advantage of that approach lies in its simplicity. Any single-conversion superheterodyne short-wave
receiver will work, even one where the local oscillator is not crystal-controlled. But the Radio Shack Time Kube is self-contained, and relatively inexpensive.

$10-\mathrm{MHz}$ frequency standard

Figure 2 is the schematic for the 10 MHz frequency standard. The two FET transistors are installed inside the Time Kube, and are used to pick
up the IF and the output of the local oscillator without loading down the radio's circuitry. The balanced modulator (IC1) and phase-locked loop (IC2) are part of the main circuit board that we are going to assemble.

Instead of a diode or other nonlinear device, a balanced modulator is used, because that type of mixer produces only two frequencies instead of the usual four; it outputs only the sum and difference frequencies. The two original input frequencies are balanced out and do not appear at the output.

By using a balanced modulator, neither the $10.455-\mathrm{MHz}$ input from the local oscillator, nor the $455-\mathrm{kHz}$ input from the IF amplifier will be present at the output. The closest output frequency of any magnitude will be the $10.91-\mathrm{MHz}$ sum frequency, but 10.91 MHz is far enough away from 10.0 MHz so as not to cause any interference. The phase-locked-loop will lock onto the $10-\mathrm{MHz}$ output of the balanced modulator, and produce a 5volt peak square wave at the WWV $10-\mathrm{MHz}$ carrier frequency.

A rather unconventional crystalcontrolled phase-locked loop is used for two reasons: 1-the crystal-controlled VCO will not lock up on the wrong frequency (ie. 10.91 MHz); and 2 - even if the WWV-propagated signal is too weak for the PLL to fre-quency-lock, the output frequency's stability would be controlled by the crystal. (The crystal's accuracy is at least $\pm 0.005 \%$, or 50 -parts-per-million, a viable reference for low accuracy of calibration when propagation of WWV is poor.)

Figure 3 shows an $A C$ power supply that you can use in place of the 9 -volt battery shown in Fig. 2. Simply connect the 12 -volt output to SI, instead of the battery. The foil pattern that we'll show you shortly already has the power-supply components incorporated into it. If you want to use the foil pattern, but would prefer to use a bat-

FIG. 3-HERE IS A POWER SUPPLY that you can use if you would prefer not to use a battery.

FIG. 4-THIS ADDITIONAL CIRCUITRY will enable your frequency standard to receive the 2.5- and $5-\mathrm{MHz}$ WWV signals. Point " A " must be pulled high for 10 MHz , " B " high for 5 MHz , and "C" high for 2.5 MHz .

FIG. 5-THE COMPONENTS CAN BE MOUNTED on perforated-wiring board. To help shield the components, a large braided grounding wire runs around the board.

FIG. 6-PARTS PLACEMENT DIAGRAM. The foil pattern in PC Service is being used here, but the parts inside the dashed box are optional. If you don't use them, be sure to put a jumper between pins 9 and 3 of IC2.
tery, just leave the power-supply components out, and connect the battery as indicated in Fig. 2.
We mentioned before that we would show you how to modify the frequency standard to receive other WWV broadcasts. If your radio has trouble receiving the $10-\mathrm{MHz}$ signal, WWV broadcasts the same information on $2.5,5,10,15$, and 20 MHz (we're only concerned with $2.5,5$, and 10 MHz), and perhaps either 2.5 or 5 MHz is coming in better. You will notice in Fig. 2, the connection between pins 9 and 3 of IC2 contains a dashed box that says "see Fig. 4." Normally (if you only want to receive WWV 10-MHz broadcast)that dashed box would be a direct short. However, if you want to have the added versatility of being able to receive three WWV frequencies, the circuitry in

FIG. 7-SHOWN HERE is the completely assembled PC board. Note that this board contains all of the components.

Fig. 4 should be added between points "X" and "Y."

An ancillary benefit from the modification is the ability to select a 2.5 MHz or $5-\mathrm{MHz}$ calibrated output, instead of just the $10-\mathrm{MHz}$ PLL output.

With the modifications, the unit will operate as follows: Assume that the Time Kube is tuned in to 5 MHz . The RF input is now 5 MHz , the local oscillator is now 5.455 MHz , and the IF is 455 kHz . The output from the balanced modulator is the difference between the local oscillator and the IF-exactly 5 MHz . The PLL has a free-running frequency of 10 MHz , so in order for it to lock on to the WWV $5-\mathrm{MHz}$ signal, the $10-\mathrm{MHz}$ signal has to be divided by two; to receive the WWV $2.5-\mathrm{MHz}$ signal, the $10-\mathrm{MHz}$ signal has to be divided by four.

When you wish to receive the WWV $10-\mathrm{MHz}$ signal, point " A " must be pulled high; when you wish to receive the $5-\mathrm{MHz}$ WWV signal, point "B" must be pulled high; and when you wish to receive the WWV $2.5-\mathrm{MHz}$ signal point " C " must be pulled high. At the same time, the corresponding frequency must be selected on the Time Kube radio. (Note that not all radios can receive the three mentioned frequencies.) Use Fig. 4 as a wiring guide for the additional switches that are required, and mount the board and switches in a cabinet as you see fit.

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless otherwise noted.
R1, R2-1 Megohm
R3, R4-270 ohms
R5-51 ohms
R6-R11- 1000 ohms
R12- 1000 ohm potentiometer
R13- 10,000 ohms
R14, R15-200 ohms
R16- 10,000 ohm potentiometer
R17-2000 ohms
R18-470 ohms
R19-1300 ohms
Capacitors
C1, C2- 0.01μ F, ceramic disc
C3-C13, C21- $0.1 \mu \mathrm{~F}$, ceramic disc
C14, C15- $1 \mu \mathrm{~F}, 35$ volts, tantalum
C16-3-30 pF trimmer
C17-10pF, 5\%, silver-dipped mica

Semiconductors

IC1-MC1496, balanced modulator, metal-can package
IC2-NE564, phase-locked loop
IC3-7805, 5 -volt regulator
Q1, Q2-2N5951, FET transistor
Other components
XTAL1- 10 MHz
B1-9-volt battery
S1-SPST toggle switch
J1-J4-phono jacks
J5-BNC jack
PL1-PL4-phono plugs
Miscellaneous: Perforated-construction or PC board, hardware, metal chassis, 50 -ohm coax cable, and battery clip.
The following components are for the optional power supply.
C18- $1000 \mu \mathrm{~F}, 20$ volts, electrolytic
C19, C20- $1 \mu \mathrm{~F}$, 35 volts, tantalum
D1-D4-1N4001 rectifier diode
IC4-7812, 12-volt regulator
T1-117/12.6 volt, 1 amp transformer PL5-AC plug and line cord
The following components are optional. They are to be used only if you would like to be able to receive all three of the WWV frequencies.
R20-R22-1000 ohms
IC5-74LS73, dual JK flip flop
IC6, IC7-74LS00, quad nand gate

Construction

Two FET transistors, Q1 and Q2, are used to prevent the main board from loading down the radio's circuits. The FET's should be mounted inside the radio cabinet, using the shortest possible lead lengths to keep them from de-tuning the radio's local oscillator and IF amplifier. Terminate the outputs with RCA jacks mounted on the radio's cabinet. (See the pho-

FIG. 8-TEST SETUP for the $10-\mathrm{MHz}$ frequency standard.
tograph in the opening of this article.) The power consumed by the FET transistors is minimal, and can be tapped from the radio's power supply as long as it's less than 20 volts.
Now you have to figure out where to tap off the Time Kube's local oscillator and IF frequencies. Whether you use Radio Shack's Time Kube 12-158, or the Weather Time Kube 12-148, the local oscillator and IF connection points are the same. The points are easy to locate if you have Radio Shack's service manual showing the schematic and the parts layout. In both radios, the local oscillator is a single-transistor and crystal-controlled. The transistor's emitter is the best point to tap off the local-oscillator frequency. In both radios, the IF signal can be tapped off from AMdetector Dl's cathode, which immediately follows the second (last) IF transformer.
In constructing the main board, you can use perforated construction
board and point-to-point wiring (if you wish) as shown in Fig. 5. However, another alternative is to use the foil pattern shown in PC Service. That pattern is for the 3 -output frequency standard, and if you want to use it for the 1-output unit you have to connect a jumper between pins 9 and 3 of IC2, and leave the additional components off the board.

A Parts-Placement diagram is shown in Fig. 6. Note that the parts specified in the Parts List for use only with the 3 -output unit are optional. If you leave them out, just be sure to put a jumper between pins 9 and 3 of IC2. Also note, that the $3-30 \mathrm{pF}$ variable capacitor, C16, may need a bit of customizing in order to make it fit on the board. Just make sure that the middle terminal, and one of the side terminals, are soldered to the appropriate pads. Figure 7 shows a photograph of the fully assembled PC board.

If you use point-to-point wiring, it

FIG. 9-HERE IS THE PLL's 5 -volt peak TTL-compatible output.
is important to ensure that a good ground is available all around the board. That is best accomplished by running a piece of thickly braided shielding around the edge of the perforated circuit board. The braiding is attached to the metal chassis by heavy screws at both ends, and at the center of the perforated wiring board. The component layout is not critical; however, lead lengths should be kept as

FIG. 10-HERE IS A BLOCK DIAGRAM of a frequency counter. The ultimate accuracy of your counter depends on the accuracy and stability of its time base.
short as possible (see Fig. 5). The perforated wiring board should be mounted in a metal box that is connected to the power supply's ground. For best results, an outside antenna should be connected to the receiver to ensure maximum signal strength.

Alignment

For alignment purposes, you will need an oscilloscope for waveform analysis, and a plastic alignment tool to adjust the trimmer components.
The first step is to balance the two inputs to ICl . Connect the radio's lo-cal-oscillator output, but not the IF output, to the main board via 50 -ohm coax cable. Adjust the balance potentiometer (carrier null), R12, for a min-imum-amplitude signal at pin 9 of ICl . The reasoning behind that adjustment is quite simple. When only one signal is input to a balanced modulator there is no heterodyningtherefore, no sum-and-difference output frequencies-and the original input frequency is highly attenuated.
The second step is to adjust the free-running frequency of the PLL's VCO to as close to 10 MHz as possible. That can be done using an oscilloscope, by adjusting trimmercapacitor Cl 6 so that the period of one

Testing

Before attempting to lock onto the actual $10-\mathrm{MHz}$ WWV signal, let's first test the $10-\mathrm{MHz}$ Time Kube receiver and the locking ability of the PLL circuitry. That way you know that
the calibration system is working. If you extend the receiver's antenna and the audio output is unintelligible, the chances are that WWV reception is poor. In that case, you'll want to use a directional outdoor antenna, or possibly try WWV reception at different times of the day or night.

Figure 8 shows the test setup. The frequency generator outputs a 100 kHz square wave. By wrapping the insulated center conductor (that carries the square wave from the generator) around the Time Kube's antenna, the 100th harmonic will be inductively coupled to the radio's antenna input, which is tuned to 10 MHz . Connect the Time Kube's local oscillator and IF outputs, via 50 -ohm coax cable, to the main board's inputs. The Phase-Lock-Loop $10-\mathrm{MHz}$ square-wave output is then coupled to $\mathrm{CH}-1$ of your oscilloscope using a $50-$ ohm termination.
While triggering off the frequency generator's $100-\mathrm{kHz}$ square wave on CH-2, tune the generator in and out a little. Eventually you will find a spot where the $10-\mathrm{MHz}$ harmonic is picked up and the PLL output will lock-up (the $10-\mathrm{MHz}$ signal will be displayed on CH-1). Adjust the PLL's loop-gain trimmer, R16, until the calibrator output can most easily lock onto the $10-\mathrm{MHz}$ input signal. The PLL's $10-\mathrm{MHz}$ output is a $5-$ volt square wave, as shown in Fig. 9.

Your frequency counter

A digital frequency counter is an instrument that can measure the fre-
quency of any periodic waveform-a sine wave, a square wave, a triangular wave, etc. The frequency of that waveform is then shown on the counter's digital display.

Figure 10 shows a block diagram of a digital frequency counter. Keep in mind that it's the counter's crystalcontrolled reference oscillator (time base) that will be calibrated. Once calibrated against the WWV signal, your counter can be used as a secondary reference source (now traceable to NBS) to measure other repetitive waveforms.
The input to the counter is fed into a signal conditioner that outputs one electrical pulse per input cycle. Those pulses having a constant amplitude and width drive the decade counters that follow. The signal-gate output controls the length of time that the main gate will allow the input pulses to pass into the decade counters. For example, when you set the counter for $0.1 \mu \mathrm{~s}$ divisions, you're adjusting the length of time that the signal gate asserts the main gate. The frequency counter's time-base oscillator is used as a clock, and therefore must be as accurate as possible.

A counter's accuracy is dependent upon several factors, but it's the timebase generator that determines the ultimate accuracy of your measurement. Quite often, the difference in cost of one counter over another depends on the quality of the time base. You can consult the time-base specifications of your counter for its performance data.

Counter calibration

Now it's time to calibrate your frequency counter. First, connect the calibrator's $10-\mathrm{MHz}$ square-wave output to the input of your counter, just as if you were going to measure the frequency of any other signal. Adjust the counter's time-base trimmer until the digital readout displays 10 MHz . That's it! Your frequency counter is now calibrated to the National Bureau of Standards WWV $10-\mathrm{MHz}$ radio transmission, and is accurate enough to be used to calibrate your other test equipment.

Parts-per-million

Oscillator accuracy is usually expressed in parts-per-million (ppm) , or sometimes as a percentage. One ppm is equivalent to 1×10^{-6}, or 1 divided by $1,000,000$. That is equal to ± 0.000001. To get the accuracy in percentage, simply multiply by 100 ; that gives you $\pm 0.0001 \%$. If the time-base has a frequency of 1 MHz , and an accuracy of 1 ppm , then it can be off by $\pm 1 \mathrm{~Hz}$ and still be within specifications.

As another example, suppose that a time base is specified as having an accuracy of 5%. That percentage represented as a decimal is equal to 0.05 , or 5 parts per hundred, or 50 parts per thousand, or 50,000 parts per million. If you have a $1-\mathrm{MHz}$ time base with an accuracy of 5%, then your oscillator's frequency can be off by $\pm 50 \mathrm{kHz}$, and still be within specifications. That doesn't sound too good for a $1-\mathrm{MHz}$ oscillator, but if the time base is an audio oscillator, then 5% accuracy might be acceptable. In that case, the accuracy is 50 parts per thousand, or $\pm 50 \mathrm{~Hz}$ at 1 kHz .

The WWV radio transmission

The most obvious sounds heard on WWV are the pulses that mark the seconds in each minute. At alternate minutes during most of each hour, a $500-\mathrm{Hz}$ or $600-\mathrm{Hz}$ tone is broadcast. A 440-Hz tone (the musical note "A" above middle " C ") is broadcast once each hour, and can provide an hourly marker for chart recorders.

There has been a controversy over the years regarding whether the WWV signal, as received via ionospheric propagation, is accurate enough to calibrate the reference oscillators used in today's moderately priced frequency counters. A letter from John Henning that appeared in
the "Letters" column of the June 1982 issue of Radio-Electronics takes the position that: "WWV as received via ionospheric propagation is not accurate enough to adjust the standard contained in many of today's moderately priced frequency counters." In contradiction to that statement, contacts at the Oscillator Characterization, Time and Frequency Division, Center for Basic Standards at NBS in Boulder Colorado say: "The WWV signal as received via ionospheric propagation is accurate enough to calibrate moderately priced (below $\$ 250$) commercial frequency counters." Let's examine the reasoning behind that statement.

The RF transmission at WWV, which is controlled by their cesium atomic clock, is transmitted on 2.5, $5,10,15$, and 20 MHz , and has an accuracy of at least 1 part per 100 billion at the time of transmission. However, the RF wave propagates by skipping between Earth and the ionosphere. The ionospheric skip is principally caused by the F_{2} layer, whose height and density above Earth varies at different times of the day and
night. The most stable propagation occurs during the daylight hours and during nighttime. (Most signal corruption occurs at sunrise and sunset, when the ionosphere's height above Earth is moving either up or down.) That movement causes a Doppler shift in the WWV RF-carrier as it is refracted back to Earth. The worst case would yield an RF-carrier accuracy of 0.1 parts-per-million ($\pm 1 \mathrm{~Hz}$ per 10 MHz), but usually the accuracy would be much better.

Let's assume the WWV carrier's worst-case accuracy is 0.1 part per million. As a rule of thumb, to calibrate any device, your frequency standard should have an accuracy one order of magnitude better than the oscillator your calibrating. Therefore, because most moderately priced frequency counters have a reference-oscillator accuracy from 1 to 10 parts-per-million, the $10-\mathrm{MHz}$ WWV RF transmission is useful as a calibration signal. On the other hand, if your reference oscillator is accurate to 0.1 part per million, or better, then the WWV signal is not accurate enough for your purposes. R-E

WITH CIE, THE WORLD OF ELECTRONICS CAN BE YOUR WORLD, TOO.

Look at the world as it was 20 years ago and as it is today. Now, try to name another field that's grown faster in those 20 years than electronics. Everywhere you look, you'll find electronics in action. In industry, aerospace, business, medicine, science, government, communicationsyou name it. And as high technology grows, electronics will grow. Which means few other fields, if any, offer more career opportunities, more job security, more room for advancement-if you have the right skills.

SPECIALISTS NEED SPECIALIZED TRAINING.

It stands to reason that you learn anything best from a specialist, and CIE is the largest independent home study school specializing exclusively in electronics, with a record that speaks for itself. According to a recent survey, 92% of CIE graduates are employed in electronics or a closely related field. When you're investing your time and money, you deserve results like that.

INDEPENDENT STUDY BACKED BY PERSONAL ATTENTION.

We believe in independent study because it puts you in a classroom of one. So you can study where and when you want. At your pace, no somebody else's. And with over 50 years of experience, we've developed proven programs to give you the support
such study demands. Programs that give you the theory you need backed with practical experience using some of the most sophisticated electronics tools available anywhere, including our Microprocessor Training Laboratory with 4 K of random access memory. Of course, if you ever have a question or problem, our instructors are only a phone call away.

START WHERE YOU WANT, GO AS FAR AS YOU WANT.

CIE's broad range of entry. intermediate, and advanced level courses in a variety of career areas gives you many options. Start with the Career Course that best suits your talents and interests and go as far as you want-all the way, if you wish, to your Associate in Applied Science Degree in Electronics Engineering Technology. But wherever you start, the time to start is now. Simply use the coupon below to send for your FREE CIE catalog and complete package of career information. Or phone us, toll-free, at 1-800-321-2155 (in Ohio, 1-800-523-9109). Don't wait, ask for your free catalog now. After all, there's a whole world of electronics out there waiting for you.

\square

Cleveland Institute of Electronics, Inc. 1776 East 17th Street. Cleveland, Ohio 44114 Member NHSC
Accredited Member Nattional Home Study Council

ARE-113

YES.e. I want to learn from the specialists in electronics-CIE. Please send me my FREE CIE school catalog, including details about CIE's Associate Degree program, plus my FREE package of home study information.
Name (print):
Address: \qquad

FIG. 1-A PROGRAMMABLE DECADE down-counter (PDDC) can count/divide by any BCD number fed into its PRESET pins.

LET'S EXAMINE PRESETTABLE DOWN counters; how to design frequency dividers, frequency synthesizers, and alpha-numeric displays.

Jam inputs

By feeding a binary number into their PRESET pins-often called JAM pins-those counter IC's can be externally programmed to divide-by any binary number: either Binary Coded Decimal (BCD), or straight binary form. For example, Fig. 1 shows a Programmable Decade Down Counter (PDDC) having a BCD code fed into its PRESET inputs via a thumbwheel switch.

The unique feature of the PDDC is known as programmable cascadability. As shown in Fig. 2, the hundreds counter is set to divide-by-2, the tens counter is set to divide-by- 6 , and the units counter is set to divide-by-3, which has an overall division ratio of $200+60+3$, or 263 . On the other hand, Fig. 3 shows that when conventional counters are cascaded with the same division ratios they would, of course, have a resultant of $200 \times 60 \times 3$, or 36,000 . We see that the presettable-types output the sum of the division ratios, while the conventional-types output the product of the division ratios.

Practical PDDC's can be programmed by a variety of methods. The two most common are electromechanical programming via thumbwheel switches, and there's electronic programming via microprocessor control.

Preset truth table

Figure 4- a shows a PDDC 4-stage synchronous down-counter, which

DOWN-COUNTER сооквоок

Presettable down-counters do more than you think.
RAY MARSTON

FIG. 2-PDDC's HAVE PROGRAMMABLE CASCADABILITY; the output is equal to the sum of the individual division ratios.
shifts down one count for each positive transition of the clock signal. Note however, as shown in Fig. 4-b, that when the down count reaches BCD 0 ($\varnothing \emptyset \emptyset), ~ t h e ~ n e x t ~ a r r i v-~$ ing clock pulse causes the counter to jump to BCD 9 (1Øø1).
Other features of the PDDC include the following: The clock signal can be disabled by a high level on the inhibit control. A decoded zero output goes high only when the $\mathrm{Q} 4-\mathrm{Q}$ outputs are in the ØøøØ state. Also, by applying a high level to the LOAD pin, the counters are forced to take up the BCD states of the PRESET inputs.

Programmable down-counter

Figure 5 shows a PDDC hookup that will count down from a BCD number loaded into the PRESET pins, by depressing the start button. For example, suppose the BCD number 6 (Ø11Ø) is loaded via the start button. On the arrival of each clock pulse, the IC counts down one step, going through the numbers $5,4,3,2,1$ and, finally, on the arrival of the 6th pulse,
to 0 , at which point the ZERO output pin goes high. That logical high is fed back to the inhibit pin, causing all further clock pulses to be ignored. The count sequence is now completed, but can be restarted only by depressing the start button once again.

Figure 6 shows how two PDDC's can be cascaded to make a downcounter having a count of 26 . Notice that the zero outputs of both IC's are inputs to a logical AND gate that triggers the inHibit control of PDDC1. Also, the clock signal of PDDC2 comes from the Q4 output of PDDC1. When the start button is depressed, counting action of the circuit is as follows: The BCD number 2 (Øø1ø) is loaded into the tens counter; the BCD number 6 ($\varnothing 11 \emptyset)$ is loaded into the units counter; after which, the clock input signal is initiated. PDDC1 counts down from 6 to 0 through the first six clock pulses. But then, because both IC's zero outputs are not high, PDDC1 is not inhibited. Instead, it starts acting as a divide-by-10

FIG. 3-WHEN CONVENTIONAL COUNTERS ARE CASCADED, the final output is equal to the product of the individual division ratios.

FIG. 4-FUNCTIONAL DIAGRAM OF A PDDC. A 4-stage synchronous down counter is shown in (a), together with its truth table shown in (b).

FIG. 5-PDDC CONNECTED AS a programmable down-counter.
counter, and counts down from BCD number 9 (code $1 \varnothing \varnothing 1$) on the arrival of the 7th pulse, simultaneously sending a single cLock pulse to PDDC2 as Q4 output switches high. Ten pulses later (on the 17th pulse), PDDCl sends another cLock pulse to PDDC2, causing its zero output to go high. Nine pulses later (on the 26th pulse), the ZERO OUTPUT of PDDC1 also goes high, at which time the output of the AND gate goes high, inhibiting further counting action.

Figure 7 shows how to connect a single PDDC as a programmable timer. The output goes high as soon as the start button is depressed, but goes low again after a programmed amount of time. The circuit is the same as Fig. 5 , except that the final output is inverted, and the clock signal is taken from a fixed time-reference source (1 pulse/second). Looking back, Fig. 6 can also be made to act as a programmable timer by similarly inverting its final output, and taking the clock
signal from a fixed time-reference source.

Frequency division

Figure 8 shows how to connect a 26 operation.

FIG. 7-PDDC CONNECTED AS A programmable timer.

PDDC as a programmable frequencydivider. The divide-by-N code is fed to the Preset pins. The output of the counter is taken from the zero output pin, and is coupled back to the LOAD pin. Suppose the starting BCD number 4 (ø1øø) has been loaded into the counter. On the arrival of the 1st clock pulse, the counter decrements to 3 , on the 2 nd pulse to 2 , on the 3rd pulse to 1 , and on the 4th pulse to 0 . At which point, the zero output goes high, and that loads the BCD number 4 (Ø1øø) back into the counters. Now the whole sequence starts over again, and the zero output switches back low. Thus, the counter repeatedly counts by the number set on the PRESET inputs, and the output (from the zero output pin) takes the form of a narrow pulse only a few hundred nanoseconds wide.

Figure 9 shows a PDDC connected as a simple divide-by-10 counter/divider. The load pin is grounded, so the PRESET codes have no effect and the counter repeatedly cycles through its basic BCD count from 9 to 0 , and then back to 9 again, and so on. The output is taken from the zero output

FIG. 6-TWO-IC (CASCADED) PROGRAMMABLE DOWN-COUNTER that is set for count

FIG. 8-PDDC CONNECTED AS A PROgrammable frequency-divider. The PDDC counts down to 0000 from the PRESET inputs-the zERO output pin is a narrow pulse of a few nanoseconds.

FIG. 9-PDDC CONNECTED AS A decade frequency-divider. The LOAD pin is grounded, so the PRESET pins have no effect on the circuit, consequently, the counter cycles through its basic decade count, from 9 to 0.
pin, which remains low until the allzero count, when it pulses high for a few nanoseconds.

Figure 10 shows how to cascade two PDDC's to make a programmable frequency-divider. The zero outputs of the two counters are inputted to an AND gate to provide the LOAD action, and the clock signal of PDDC2 is derived from the Q4 output of PDDC1. For example, assume that at the start of the count cycle the BCD number 24 ($\emptyset 1 \emptyset, \emptyset 1 \emptyset \emptyset) ~ i s ~ l o a d e d ~ i n t o ~ t h e ~$ counters. For the first few counts, PDDC1 counts down from 4 to 0 , and then the zero output goes high. However, because PDDC2's zero output is low, the AND gate's output does not go high; that would reload the counters. But instead, PDDC1 reverts to the normal divide-by-10 mode, jumping to the 9 state, simultaneously feeding a clock pulse to PDDC2 as Q4 output switches high. That action continues until the arrival of the 24th pulse, when the zero outputs of both IC's go high together. At that time, the output of the logical AND gate goes high (for a few nanoseconds), and reloads the BCD number 24 back into the counters. The whole sequence then starts over again.

Frequency synthesis

The main application of programmable frequency-dividers, as shown in Fig. 11, is in frequency synthesizers when used in conjunction with a (PLL) Phase Locked Loop. Notice that the output of a Voltage Controlled O scillator (VCO) is fed, via the programmable divide-by-N counter, to one input of a phase detector. The other phase-detector input is taken from a (fixed frequency) crystal-controlled reference generator. The phase detector produces an output voltage proportional to the difference between the two input frequencies. That voltage is filtered into a DC voltage, and fed to the VCO's control input that automatically adjusts the VCO's frequency. When the output of the di-vide-by-counter is the same as the reference generator, the PLL is said to be locked.

Notice that in Fig. 11, the output frequency of the VCO is N-times the value of the frequency reaching the
input of the phase detector. Consequently, when the PLL is locked, the output frequency of the VCO is equal to N -times the reference frequency; for example, if $\mathrm{N}=236$, and the reference frequency $=1 \mathrm{kHz}$, then the VCO frequency output equals 236 kHz , and also has crystal accuracy.

4522B/4526B down counters

The best-known family of CMOS programmable (cascadable) downcounters is shown in Fig. 12; it is composed of the 4522B (decimal) and the 4526B (binary) 4-bit IC's, which both have the same pinout. Those IC's are almost identical to Fig. 4 , except that the counters can be synchronously set to the zero state by forcing the MR (master reset) pin high. The and gate is built into the zERO output line, so the zero output can only go high if the CF (cascade feedback) pin is also high; that enables cascading without external gates.

FIG. 10-TWO-IC (CASCADED) PROGRAMMABLE FREQUENCY-DIVIDER, set for divide-by-24 operation.

FIG. 11-A PROGRAMMABLE FREQUENCY-SYNTHESIZER can be constructed using a divide-by-N counter in conjunction with a PLL.

The 4522B and 4526B can be used in the same ways as the counters shown in Figs. 5 to 11, except that the MR pin is normally grounded, and the and gate is built into the IC. When those IC's are used alone, the CF pin must be tied high to enable the zero output. When cascading two or more IC's, tie the zero output of the Most Significant D igit (MSD) IC to the CF pin of the IC that is used for the next most significant digit, repeating the process until the Least Significant Digit (LSD) IC is reached. Figure 13 shows the hookup for making a 2 stage programmable down-counter, and Fig. 14 shows the connections for a 2 -stage programmable frequencydivider.

When using those IC's, notice that all unused inputs, including PRESETS, must be tied high or low, as appropriate. Also, the outputs of all internal counter stages are available through the Q output pins, enabling the counter states to be decoded by using external circuitry.

40102B/40103B down counters

Each IC in the 40102B and 40103B family of devices (see Fig. 15-a) effectively act as a pair of presettable 4-bit down counters, cascaded in a single package. The zero output that goes low under the zero-count condition is the only externally available counting signal. That's in contrast to

FIG. 12-THE 4522B (DECADE), AND 4526B (BINARY) programmable downcounters. Those are the same as the PDDC counters except that the AND gate that's used when cascading IC's is integrated into the IC.

FIG. 13-TWO-IC (CASCADED) PROGRAMMABLE DOWN-COUNTER using the 4522B or 4526B.

FIG. 14-TWO-IC (CASCADED) PROGRAMMABLE FREQUENCY-DIVIDER using the 4522B or 4526B.

FIG. 15-FUNCTIONAL DIAGRAM (a) AND TRUTH TABLE (b) of the 40102B dual-decade and 40103B 8-bit binary down-counters.
the Q outputs typically available on other counter IC's. The truth table in Fig. 15-b is common to both IC's. The 40102B is a 2 -decade BCD downcounter, while the 40103B IC is an 8-
bit (or two 4-bit words) binary counter. Both types of counters clock down on the positive transition of the clock signal.

Codes that are applied to the eight

PRESET pins of those IC's can be loaded asynchronously by pulling the $\overline{\mathrm{AL}}$ pin low, or synchronously on the arrival of the next ClOCK pulse by pulling the $\overline{S L}$ pin low. When the $\overline{\mathrm{CLR}}$ input is pulled low, the counter asynchronously clears to its maximum count. When the inh control is pulled high, it inhibits both the CLOCK counting action, and the ZERO OUTPUT action. The inh control thereby acts as a CARRY-IN pin for cascading counter IC applications.

Figures 16 to 19 show four ways of using that family of presettable downcounters. Figure 16 shows the connection for making a programmable 8 bit, or 2-word timer, or down-counter. Figure 17 shows the circuit of a programmable frequency-divider that has divide-by- $(\mathrm{N}+1)$ operation. Its zero output going low for one full clock cycle under the zero-count condition. True divide-by-N operation can be obtained by tying $\overline{\text { SL }}$ high and connecting ZERO OUTPUT to $\overline{\mathrm{AL}}$; the output pulses will have widths of only a few hundred nanoseconds.

Finally, Figs. 18 and 19 show the basic connections that are used to cascade 40102B or 40103B stages in large-word programmable applications. Figure 18 shows the counter hookup for the fully synchronous

FIG. 18-METHOD OF RIPPLE CASCADING 40102B or 40103B counters.

FIG. 19-METHOD OF SYNCHRONOUS CASCADING 40102B or 40103B counters.
clocking that's needed when used for high-speed applications.

Decoders

Most of the counter/dividers that we've looked at have 4-bit coded outputs, which take the standard code forms shown in Fig. 20-a. Thus, when the counters are in the BCD-5 state, they have an output code of $\emptyset 1 \emptyset 1$. When in the BCD-7 state, they have an output code of $\emptyset 111$ (read with Q4 to the left). Individual output states of the counters can easily be decoded and used for driving external display units or control lines, by using

FIG. 16-PROGRAMMABLE TIMER using a 40102B or 40103B.

FIG. 17-PROGRAMMABLE FREQUENCY DIVIDER (divide-by-N+1).
the basic logic technique shown in Figs. 20-b and 20-c. The decoder outputs that are high (logic-1) in the desired code state are fed directly to the inputs of a 4-input AND gate, and those that are low are fed through an inverter. If BCD numbers are to be decoded, and the numbers fall between 2 and 7 inclusive, the Q4 code can be ignored, and a 3-input AND gate can be used.

If more than three code states are to be decoded, it's economical to use dedicated CMOS decoder IC's, such as the 4028B, 4514B or 4515B. The 4028B in Fig. 21 is a 4-bit BCD-toDecimal decoder that has direct decoding of the ten possible input BCD numbers 0 to 9 inclusive. Only one of the ten decoded outputs will go high with the remaining outputs low. The 4514B and 4515B in Fig. 22 are full 4bit binary decoders having an individual output for each of the sixteen possible code numbers. The 4514 has active high outputs; that means that all outputs are low except the decoded line, which is high. The 4515B has active low outputs. Those IC's are considerably more sophisticated than the 4028B type, and they have their FOLLOW/LATCH control on pin-1, and they have a DECODE INHIBIT control on pin-23.

When the decode inhibit pin is brought high, all decoding functions are disabled; it drives all outputs low in the 4514 B , or all outputs high in the 4515B, irrespective of the states of all other pins. When the follow/latch pin is high, the IC's act as straight decoders; but when the pin is pulled low, it latches the prevailing input code into memory and retains it, irrespective of the subsequent states of the input code.
4-BIT 4 CODES $\left.\begin{array}{|c|c|c|c|c|}\hline \text { DECIMAL } & \mathbf{0 4} & \mathbf{0 3} & \mathbf{0 2} & \mathbf{Q 1} \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 1 \\ 4 & 0 & 1 & 0 & 0 \\ 5 & 0 & 1 & 0 & 1 \\ 6 & 0 & 1 & 1 & 0 \\ 7 & 0 & 1 & 1 & 1 \\ 8 & 1 & 0 & 0 & 0 \\ 9 & 1 & 0 & 0 & 1 \\ \hline 10 & 1 & 0 & 1 & 0 \\ 11 & 1 & 0 & 1 & 1 \\ 12 & 1 & 1 & 0 & 0 \\ 13 & 1 & 1 & 0 & 1 \\ 14 & 1 & 1 & 1 & 0 \\ 15 & 1 & 1 & 1 & 1 \\ \hline\end{array}\right]$ BINARY

FIG. 20-THE CODED Q4-Q1 OUTPUTS of a 4-bit counter are shown in (a), while (b) and (c) show how to decode the numbers 5 and 7 , respectively.

FIG. 21-PINOUT OF THE 4028B bcd-todecimal (1-of-10) decoder.

FIG. 22-PINOUT OF THE 4-BIT BINARY (1-of-16) decoders, the 4514B (active-high output) and the 4515B (active-low output).

BCD-to-7-segment decoder

The BCD outputs of decade counters can easily be decoded and used to drive 7 -segment (light Emitting Diodes) LED's, or (Liquid Crystal Displays) LCD's, by using suitable

23-c. Common-cathode types must be driven by IC's that can source significant current, while commonanode types must be activated by devices that can sink a significant amount of current. Notice that a cur-rent-limiting resistor must be wired in series with each LED segment.

IG. 23-THE 7-SEGMENT LED (OR LCD) DISPLAYS have the standard segment format shown in (a). The LED types are available as either common-cathode (b), or commom-anode (c) types.

The most popular CMOS IC for driving 7 -segment LED displays is the 4511B BCD-to-7-segment de-coder/LED-driver, shown in Fig. 24. That IC is ideally suited for driving common-cathode displays because its outputs can each source up to 25 milliamperes of current.

FIG. 24-THE 4511B BCD-TO-7-SEGMENT Latch/Decoder/LED-Driver. This single IC has the combined capability of a 4 -bit data latch, a BCD-to-7-segment decoder, and a transistor-driver output for LED displays.

The 5411B is an easy IC to use. It has 4 pins as a BCD input, an output driving pin for each of the seven LED segments, and only three input control pins. The LAMP TEST input pin is normally tied high; when pulled low, it turns on all seven segments of the display, irrespective of the input code. The BLANK input pin is also normally tied high; when pulled low, it turns off all display segments, irrespective of the input code. The store control enables the IC to have either transparent or latched decoder operation. When store is low, the IC has transparent decoding of the BCD inputs. When STORE is switched high, the BCD input that is present at the moment of switching is latched into an internal memory and then decoded. That BCD number is held as long as STORE remains high.

7-segment LCD drivers

The 7-segment LCD's (Liquid Crystal D isplays) have the same format as LED types, except that their common pin is known as the back-
plane (BP). LCD's must be driven by AC signals that have virtually no DC components. In practice, the AC signal takes the form of a square wave with a frequency in the $30-\mathrm{Hz}$ to $200-$ Hz range.

Old-style LCD drivers relied on the use of dual power supplies to provide the AC drive. Modern types, however, use the bridge-supply technique, shown in Fig. 25-a, to provide the necessary AC drive. When a segment

DC component. In that LCD driving system, when a segment is turned off, it is simply shorted to the backplane of the display.

The most popular CMOS IC for driving 7 -segment LCD's is the 4543B BCD to 7-segment decoder/ LCD-driver, which uses the bridge power-supply technique. Figure 26 shows the 4543B. That device has to have its PHASE pin connected to the backplane of the display, and must be

FIG. 25-VOLTAGE-DOUBLING BRIDGE METHOD of driving Liquid Crystal Displays (LCD). A square wave is inputted to the phase inverter and backplane (BP) shown in (a). That creates an AC voltage across the backplane shown in (b).

FIG. 26-THE 4543B BCD-TO-7-SEGMENT Latch/Decoder/LCD-Driver. The decoder outputs (a-g) are connected directly to the LCD display.
is turned on using the bridge supply, the segment and backplane are driven by antiphase square waves. The resulting voltage across the LCD is AC as far as the display is concerned; it's the value of segment voltage relative to the backplane voltage that is important. Lets examine how that works. In Fig. 25-b, part A of the waveform shows the segment to be 10 -volts positive to the backplane; in part \mathbf{B}, it is 10 -volts negative to the backplane. Therefore, the LCD is effectively driven by an AC signal with a peak-to-peak value of 20 volts, and with no
driven form a symmetrical external square wave. The blank pin is normally grounded; that pin blanks the entire display when pulled high. The $\overline{\text { STORE }}$ control causes transparent decoding when pulled high, or causes latched decoding when pulled low.

In conclusion, all of the devices that we have discussed in this article are intended for use in fairly simple applications such as the ones shown. For dedicated applications such as frequency meters, or digital clocks, you should consider the potential applications for the special VLSI IC's. R-E

HARDWARE Hacker

 HDTV—an alternative viewpoint

 HDTV—an alternative viewpoint}

MANY THANKS FOR ALL THOSE CALLS and letters I got on the patents and patenting topics that we covered back in the October issue. Of the 415 responses to date, far and away the majority were in the "right on" or else the "if only I had known that six years ago" category, and I thank you for them.
You'll be seeing other viewpoints on that from time to time over in the letters column. Since arguing one-on-one in the letters column is just not my usual style, I'll repeat our key point here-For most of you hardware hackers most of the time, any involvement whatsoever with patents and patenting will almost certainly prove to be a monumental waste of time, energy, and money-not to mention the resulting headaches.

The overwhelming evidence for that is based on (A) my lifetime of experience directly involving inventions, patenting, creativity, design, and product development; (B) the independent and very thoroughly documented third-party studies of patent productivity; and above all, (C) the dozens of horror stories from current Radio-Electronics hardware hackers who have already gotten ground into hamburger by all of the absurdities that surround the patent process today.

I am sorry if I did offend one or two patent attorneys, and one or two others who seem to be personally profiting from this very sorry state of affairs. I also extend my apologies to their BMW dealers.

Well, now that we got that hornet's nest kicked out of the way, let's take a swipe at another one. Which involves...

High definition television

The FCC recently mandated that all the future high-resolution video images done in this country will have to be NTSC-compatible. NTSC (which I jokingly define as Never The Same Color) has been a thirty-year-old compromise which never worked properly. It was long ago flushed by all of the personalcomputer manufacturers.

Besides its being monumentally stupid, insanely protectionist, and incredibly hindsighted, this ruling is precisely the same as asking a consortium of trolley-car manufacturers to dictate a mandatory new standard for the personal vehicular transport of the nineties.

Any disinterested outsider might conclude that a new generation of fully digital and internationally standard " 35 millimeter theater quality" interactive home video with eight multi-lingual stereo audio channels is an obvious product that should have a tremendous world-wide demand for the next several decades.

Where would the programming for true HDTV come from? Well (1) from local cable systems; (2) from upcoming generations of videotape rentals; (3) from video-tape ownership; (4) from home video cameras; (5) from satellite recep-

NEED HELP?

Phone or write your Hardware Hacker questions to: Don Lancaster Synergetics
Box 809-RE
Thatcher, AZ 85552
(602) 428-4073

White noise software
Top octave generators
High definition television
Pseudorandom sequences Electronic music resources
tion; and at least in several other countries, (6) from direct-broadcast satellites that go straight to the end-user.

While only minuscule at present, I feel that a (7) interactive computer-based Hypermedia will eventually become a most dominant source for HDTV programming. Once a HDTV standard exists, all of those major personal computers suppliers are likely to adopt it, eliminating the artificial gulf between home video and home computing, along with that plethora of less-than-HDTV monitor standards that exist today.

What about (8) network-broadcast TV? At best, that would be a distant and eighth-rate source for the HDTV program material, and could be ignored entirely.

I personally feel that there has not been anything worth watching on network-broadcast TV for the last twenty years, and certainly nothing worth improving the definition of. To allow those people to enforce a lower quality and noninternational poor patchwork "unstandard" at the expense of the ultimate videophile is unthinkable, inexcusable, and an outright atrocity.

As with streetcars, there comes a time when it is a good idea to tear up the tracks.

Further, virtually all of the HDTV receivers will now include a microprocessor, a new frame grabber, great heaping bunches of additional RAM memory, and possibly even a digital signal processor.

Which means that real-time video compression and decompression should be fairly cheap and simple to add to virtually any trans-
mission medium．Thus，we might easily end up with HDTV transmis－ sion bandwidths that are ridiculously lower than the pres－ ent NTSC standards．
Most newer HDTV displays will probably be able to accept older NTSC，PAL，RGB，or SECAM pro－ gram inputs，and even spruce them up a tad before displaying them．The key question is whether an older NTSC television set that inadvertently got plugged into some HDTV program source has to be able to display something viewable．The present ruling makes about as much sense as re－ quiring that all CD－ROM disks be able to output low－fidelity audio when played with a cactus needle on a 78 －RPM turntable．
As per usual，I do welcome your comments on this．In fact，let＇s have us another contest．Write me with your thoughts on HDTV． There will be all the usual Incredible Secret Money Machine books for the best dozen or two entries，with an all expense paid （FOB Thatcher，AZ）tinaja quest for two for the best entry of all．Natu－ rally，you do not have to agree with me，but the more thought－out and the more coherent your written re－ sponse，the better will be your odds of winning．

Do send your entries directly to me per the Need Help？box，rather than over to the Radio－Electronics editorial offices．And，hey，no fair sending the＂right on＂responses to me and the＂up yours＂ones over to the letters column．

Pseudo－random sequences

I have long been fascinated with both random and pseudorandom numbers and their generation．

Truly random numbers are quite difficult to generate，and it is very easy to introduce all sorts of subtle bias into them．One fact that many hardware hackers refuse to accept is that virtually any and all attempts at making something more ran－ dom will nearly always have the exact opposite of the intended effect．

A pseudorandom sequence is some long string of numbers that eventually will exactly repeat，but any short portion of which will ap－ pear totally random，and appar－ ently obey all the rules of random

FIG．1－A SIX－STAGE PSEUDORANDOM sequence generator produces 63 six－bit binary numbers in an apparently random，yet exactly repeating order．
number distributions．The con－ cept of＂noise that repeats＂is es－ pecially handy for industrial test－ ing，for military radars，for security systems，and for such things as a re－deal of the same card hand in a computer game or simulation．

To generate a new pseudoran－ dom sequence，you can use，of all things，a pseudorandom se－ quence generator．Golly gee，Mr． Science．

To do that，you take a plain old hardware or software shift register． You then will choose a few of the outputs and xor（exclusive－or） them together and use the result－ ing one or zero as an input for the next clocking cycle．

One of two things is likely to happen．If you pick the wrong feedback combinations，then the shift register will shortly hang in its all－ones or all－zeros state．But with just the right combination，the shift register will become some sort of a counter of some length， that goes through a series of count values in a repeating and predicta－ ble order．

The trick is to pick out the lon－ gest possible sequence length for any shift register by finding just the right＂magic＂feedback com－ binations．

That is called a maximal length sequence and it＇s always one less than the total possible number of states in the register．Shorter groupings within one of those maximal length sequences will ap－ pear to be random and obey most of the properties of real random numbers．

Figure 1 shows you a six－stage pseudorandom generator that will generate a sequence that is 63 counts long．You might like to list
all of the states to prove that，sure enough，short samples do appear random，even though the whole sequence does repeat once each 63 clocks．I used that back in my Psyctone project，which seems like eons ago，in the＂golden age＂ of Popular Electronics．
You can create up to four related maximal－length sequences，a＂for－ ward＂one and its complement， and a＂backward＂one and its com－ plement．There is one big gotcha： You must never start with the＂all

ELECTRONIC MUSIC

 RESOURCES
Audio Amateur

Box 576
Peterborough, NH 03458
(603) 924-9464

Devtronix Organs
6101 Warehouse Way
Sacramento, CA 95826
(916) 381-6203

Electronic Musician
19725 Sherman Way, Ste 160
Canoga Park, CA 91306
(818) 709-4662

Keyboard

20085 Stevens Creek Blvd Cupertino, CA 95014
(408) 446-1105

Journal AES

60 East 42nd Street, Rm 2520
New York, NY 10165
(211) 661-2355

Journal ASA

335 East 45th Street
New York, NY 10017
(212) 661-9404

Mix Bookshelf
6400 Hollis Street \#12
Emeryville, CA 94608
(415) 653-3307

Music, Computers \& Software
190 East Main Street
Huntington, NY 11743
(516) 673-3243

Music Technology

22024 Lassen Street, Ste 118
Chatsworth, CA 91311
(818) 407-0744

Musician

1515 Broadway
New York, NY 10036
(212) 764-7300

Rolling Stone

8500 Wilshire Blvd, Ste 926
Beverly Hills, CA 90211
(213) 659-1242

Speaker Builder

Box 494
Peterborough, NH 03458
(603) 924-9464
zeros" state or your generator will hang, permanently outputting zeros.

For many uses, you'll want to use much longer sequences. Fig-

STAGES	LENGTH	FEEDBACK
2	3	1, 2
3	7	2,3
4	15	3,4
5	31	3,5
6	63	5,6
7	127	6,7
8	255	4, 5, 6, 8
9	511	5,9
10	1023	7, 10
11	2047	9, 11
12	4095	6, 8, 11, 12
13	8191	9, 11, 12, 13
14	16,383	4, 8, 13, 14
15	32,767	14, 15
16	65,535	4, 13, 15, 16
17	131,071	14, 17
18	262,143	11,18
19	524,287	14, 17, 18, 19
20	1,048,575	17, 20
21	2,097,151	19, 21
22	4,194,303	21, 22
23	8,388,607	18, 23
24	16,777,215	17, 22, 23, 24
25	33,554,431	22, 25
26	67,108,863	20, 24 25, 26
27	134,217,727	22, 25, 26, 27
28	268,435,455	25, 28
29	536,870,911	27, 29
30	1,073,741,823	7, 28, 29, 30
31	2,147,483,647	28,31

FIG. 2-HERE ARE THE "MAGIC" FEEDBACK connections for many maximal length pseudorandom sequences. If two feedback numbers are shown, you xOR (exclusive-or) them together. If four numbers are shown, you XOR by pairs and then XOR the two intermediate results. Either hardware or software may be used.
ure 2 lists the magic feedback combinations needed for various maximal-length sequences. A very few of the longer ones aren't "quite" maximal, but they are the best that anyone has ever found so far.
A very interesting pseudorandom generator for computer use appears in Fig. 3. This is a 31-stage register, giving you a sequence length of $2,147,483,687$ before it repeats. Yet, it is able to deliver an apparently random one or zero in 40 microseconds or less with most personal computers.
The all time whiz-bang expert on random or pseudorandom anything is Donald Knuth in his Art of Computer Programming volumes. They are available at any large technical library. I've also gotten into that rather extensively in my Apple Assembly Cookbook,
where you will find several ways around the fatal flaws in that Applesloth random-number generator, along with lots of useful ways to generate and test random and pseudorandom numbers of any size.

A white noise source

As a quick and dirty example of a 31-stage pseudorandom generator, Fig. 4 shows you a short ma-chine-language routine that makes an Apple IIc, Ile, or IIgs sound as if it is frying itself in its own grease. I'll leave it up to you to dream up some of the more fiendish and unusual uses for this short code module.

On every binary one, the speaker cone gets whapped, while it stays where it is on a zero. As shown, the code is very slightly pinkish, rather than a pure white
noise．I＇ll let you add the few extra bytes needed to equalize the tim－ ing so each loop takes exactly the same time，regardless of when the cone gets moved．

You can use similar code to ex－ plore other pseudorandom lengths．As the lengths get shorter， you will first note some structure． For even shorter lengths，actual to－ nal color will result．

And here＇s something not quite related that you might like to play with：If you take any old 30 －bit dig－ ital word and whop the speaker on the ones and not whop it on the zeros，different timbre，or tonal values will result depending on the strengths of the harmonics you are listening to．

For instance，getting a very strong fundamental and no low harmonics should result in a flute－ like sine wave，while any wave－ form with a strong third，fourth， and fifth，but a weak first and sec－ ond should give a major chord， although you are only pushing a
speaker cone all the way in or out．
Thus，you can easily generate a pure tone，as well as two or three apparent notes at once by using that simple technique．

Now，it is easy to pick words at random and listen to the results， but how do you purposely design your selected word for the desir－ able harmonic structure？
Fourier series anyone？

Resources for electronic music

As with any other field，the bookstores，tech journals，and popular magazines that service electronic music interests are your starting place．It also helps if you can carry a tune in a bucket．

The Electronic Music Resources sidebar lists some of the more im－ portant and more interesting places to go to get started．

Probably the best collection of the electronic music，synthesizer， MIDI，audio，and video produc－ tion books in the world is available through the Mix Bookstore．Their

FIG．3－A THIRTY－ONE STAGE PSEUDORANDOM sequence generator done in software produces a＂random＂string of $2,147,483,687$ ones or zeros before it will start to exactly repeat．Typical execution time is under 40 microseconds．

（1）On an Apple IIt，Ilc，Ile，or Ilgs，get into BASIC．SYSTĖM and do a CALL－ 151 to get into the monitor．

（2）Then，enter the following code：

0300：	4 C	07	03	27	OC	A1	C9	AD	＜cr＞
0308：	06	03	0A	0A	0A	4D	06	03	＜cr＞
0310：	0 A	0A	90	03	2 C	30	C0	2 E	＜cr＞
0318：	03	03	2E	04	03	2 E	05	03	＜cr＞
0320：	2 E	06	03	4 C	07	03	11	11	＜cr＞

（3）Finally，do a BSAVE KFC．VIRUS，A\＄0300，L\＄28，D2
（4）To test，use，or abuse your code，do a BRUN KFC．VIRUS
FIG．4－THIS WHITE－NOISE GENERATOR makes an Apple computer sound as if it is frying itself in its own grease．A 31－stage pseudorandom generator is used．Except for stress－induced medical effects on the system owner，the code is more or less harmless．

NAMES AND NUMBERS

Allied Electronics

PO Box 1544
Fort Worth，TX 76101
（800）433－5700

Amperex

230 Duffy Avenue
Hicksvile，NY 11802
（516）931－6200
Ark－Plas Products
Hwy 178 North
Flippin，AK 72634
（501）453－2343
Computer Shopper
Box F
Titusville，FL 32781
（407）269－3211
Devtronix Organs
6101 Warehouse Way
Sacramennto，CA 95826
（916）381－6203
Fotocut
Box 120
Erieville，NY 13061
Hewlett－Packard Journal
3200 Hillview Avenue
Palo Alto，CA 94304
（415）857－1501
International Rectifier
233 Kansas Street
EI Segundo，CA 90245
（213）772－2000
Model Railroader
1027 North 7th Street
Milwaukee，WI 53233
（414）272－2060

Pace

34 Foley Drive
Sodus，NY 14551
（315）483－9122

Statek

512 N．Main Street
Orange，CA 92668
（714）639－7810

Synergetics

Box 809
Thatcher，AZ 85552
（602）428－4073
free catalog is an absolute must．
Of all the publications that are listed though，I think the Journal of the Audio Engineering Society has the best long－term track rec－ ord on both the tech fundamen－

FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam. The NEW EXAM covers updated marine and aviation rules and regulations, transistor and digital circuitry. THE GENERAL RADIOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains vital information. VIDEO
SEMINAR KITS ARE NOW AVAILABLE.
WPT PUBLICATION 979 Young Street, Suite A Woodburn, Oregon 97071

Phone (503) 981-5159
CIRCLE 179 ON FREE INFORMATION CARD
tals and on all the roots of the digital synthesis revolution, while Craig Anderton's Electronic Musician offers "hands on" coverage of the very latest and the very best.
Let me know if there is anything else that you think should be added. So far, we have done resource collections on handicapped aids and electronic music. Which others would you like to see?

Top-octave generators

If you wanted to design your own home, theater, or a church organ from the ground up today, far and away the simplest and the cheapest way to get the highest

CIRCLE 177 ON FREE INFORMATION CARD

MIDI PROJECTS

BP182-MIDI interfacing enables any so equipped instruments, regardless of the manufacturer, to be easily connected together and used as a system with easy computer control of these music systems. Combine a computer and some MIDI instruments and you can have what is virtually a programmable orchestra. To get your copy send $\$ 6.95$ plus $\$ 1.25$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.
possible quality results would be to model what you are after on the Ensoniq synthesizer inside an Apple IIgs and later on tack on a MIDI card or two.

Nonetheless, I get an amazing number of calls from all you RadioElectronics readers who want to do things the "old way," using those rather obsolete and horribly limiting top-octave generators and keyer chips.

I suspect that is mostly the "Gee dad, its a Wurlitzer" folks trying to distance themselves from all the "Heavy Metal" punk rockers. Like it or not, all those punk rockers have dumped many millions of

FIG. 5-A TOP-OCTAVE GENERATOR integrated circuit takes an input reference square wave and divides it down to approximate the thirteen uppermost notes on an electronic organ. Further binary division of each output can generate all the needed lower notes. This SGS part replaces the Mostek MK5083.
dollars and hundreds of thousands of man hours into developing very simple, ultra cheap, and highly effective all-digital synthesizers that can now easily duplicate any known or any imagined musical instrument with stunning accuracy and clarity.
Well, if it is top-octave generators you want, then top-octave generators are what you are going to get. Figure 5 shows you how one single-input reference square wave and a top-octave generator can generate thirteen of the highest needed keyboard notes. A second keyer chip can then divide those notes down and turn them on and off in an organ-like manner.

Roy DeVault of Devtronix has lots of top-octave generators and keyer chips and boards available, and is more than glad to sell them to you at low cost in very small quantities. Roy provides everything from single chips up through new and used complete organs, besides being one incredible information source. He welcomes your calls.

If you do decide to build a topoctave generator for use as a pitch reference or a tuning instrument, just be sure to take into account these two big gotchas: Your output tones absolutely must be filtered to produce ultra-pure sine continued on page 86

Contemporary Electronics Series

The fast, easy and low cost way to meet the challenges of today's electronic innovations. A unique learning series that's as innovative as the circuitry it explains, as fascinating as the experiments you build and explore.

From digital logic to the latest 32-bit microprocessor, the McGrawHill Contemporary Electronics Series puts you into the electronic picture one easy step at a time. Fifteen unique Concept Modules, sent to you one every 4-6 weeks, give you a handle on subjects like optoelectronics, robotics, integrated circuits, lasers, fiber optics and more.

Each Concept Module goes right to the heart of the matter. You waste no time on extraneous material or outdated history. It's a fast, efficient, and lively learning experience... a non-traditional approach to the most modern of subject matter.

Unique Interactive Instruction

With each module, you receive a McGraw-Hill Action Audio Cassette. Each tape is a dynamic discussion that drives home the key facts about the subject. Your learning

experience is reinforced through interaction with vividly illustrated text, audio cassettes, and actual electronic experiments. Indexed binders preserve backup material, notes, and tapes for convenient referral.
 in Contemporary Electronics
Throughout your series, laboratory experiments reinforce every significant point. This essential experience ...dynamic, hands-on demonstrations of theory in practice... will help you master principles that apply all the way up to tomorrow's latest VLSI (Very Large Scale Integrated) circuitry.

In your very first module, you'll use integrated circuits to build a digital oscillator, verifying its operation with a light emitting diode (LED). You'll learn to identify passive and active components, understand concepts common to all electronic circuits.

For Anyone Interested in Electronics

The Contemporary Electronics Series is designed for anyone from hobbyist to professional. It's for you if you're looking for new fields of interest...if you're a teacher who
 technicians who feel their training needs freshening up. It's the quickest, most convenient, probably least expensive way to do it. And the only one that gives you hands-on experience.
15-Day No-Risk Trial
To order your first module without risk, send the card today. Examine it for 15 days under the terms of the order form and see how the Contemporary Electronics Series gets you into today's electronics. If card has been used, write us for ordering information.

McGraw-Hill
Continuing Education Center 3939 Wisconsin Ave. Washington, D.C. 20016

HARDWARE HACKER

```
continued from page }8
```

waves that can be used for tuning purposes; and you have to be able to vary your pitch by as much as 30 percent when tuning a piano. Because of the enharmonic lateral stiffness of piano strings, a piano keyboard has to be "stretched," rather than tuned to textbook frequencies. Otherwise it will sound awful.

New tech lit

Free samples of some low-cost connectors for pneumatic robotics are available from ArkPlas Products, while one good and cheap source for custom photochemical etching of thin materials is Fotocut. Many thanks to Model Railroader magazine for that hard-to-find item. Besides absolutely outstanding tech writing, you might want to check out that magazine for very unusual tools, ideas, and materials.

CABLE TV SPECIALS CONVERTERS

JRX-3 DIC-36 Channel Corded Remote. ${ }^{\mathbf{S} 129.95}$ RCA 58-3 58 channel set top with Jerrold Descrambler $\$ 99.95$
SB-3 - 'The Real Thing'
..... $\$ 109.95$
SB-3-Taiwan Copy
..... $\$ 89.95$
DRZ-3D1C-68 Channel Wireless with Descrambler
..... $\$ 199.95$
ZENITH:
Z-TAC Cable Add-On
..... $\$ 169.95$
VIEW STAR: MXC 2001-65 Channel Wireless-
with Parental Lockout
$\$ 89.95$
MXC 2001 A-B-Same as above with A-B Switch
..... $\$ 109.95$
MXC 2501-65 Channel Wireless with Volume
..... $\$ 119.95$
Universal V7472-72 Channel Wireless Remote
MTS Stereo Converter-FullFeature DescramblerCompatible
$\$ 129.95$
MISCELLANEOUS

OAK: ECONO-3V Mini-Code $\$ 89.95$
ECONO-3V Mini-Code Vari-Sync $\$ 89.95$
ECONO-3V Mini-Code Vari-Sync Plus Auto On-Off $\$ 119.95$
OAK: Sine-wave Anti-Jammer Kit $\$ 39.95$
JERROLD: 400 \& 450 Handheld Transmitters \$29.95
HAMLIN MLD-1200 Channels 2 or 3 $\$ 99.95$
NEW ITEMS: Scientific Atlanta SA-3 $\$ 129.95$
GENERAL
INSTRUMENTS: VCU Amplified Video Switch Signal Amplifier $\$ 59.95$
ALL UNITS GUARANTEED. QUANTITY PRICES AVAILABLE.
UNITED ELECTRONIC SUPPLYP.O. BOX 1206 - ELGIN, ILLINOIS 60121 - 312-697-0600

By the way, if you ever do run across a model railroader, just tell him you are scratch-building an $0-2-0$ articulated Camelsback, and watch his eyes light up.

International Rectifier now has a free Microelectronic Relay Designer Manual, mostly on their ChipSwitch solid-state interfaces.

Allied Electronics has a new free \#889 Catalog. Allied is one of the oldest of those "old line" electronics distributors and are at long last back to offering lots of products stocked in depth at tolerable prices.

The free Hewlett-Packard Journal is certainly worth a subscription to. The October 1988 issue has good stuff in it on SCSI interface fundamentals and on some cheap optical encoders. On the other hand, I simply cannot conceive of anyone ever actually buying one of those diskless workstations they're highly touting in the same issue.

Even when spelled correctly, I do feel that diskless workstations are both fascist and on the stupid side of dumb.

One good and low-cost source of miniature low-frequency crystals is Statek, who have a number of data sheets, price lists, and apnotes on hand. Ask for their literature list.

Two sources of low-cost infrared "people detectors" that operate using new pyro-electric sensors include Amperex and Pace. They both have several very detailed application notes and data sheets available.

Turning to my own products: Yes, we now have complete bound sets of reprints to all of the Hardware Hacker columns that you've seen here to date, along with volumes I and II of my sister Ask the Guru column that you'll find in Computer Shopper. And, of course, my classic TTL Cookbook and CMOS Cookbook remain available to those of you wanting to pick up the basics of digital integrated circuits.

As always, this is your column and you can get tech help and off-the-wall networking per the end box. You'll find two Names and Numbers lists this month, one for music stuff and one for everything else. Let's hear from you. R-E

Shortwave RADIO

STANLEY LEINWOLL， CONTRIBUTING EDITOR

Sunrise and sunset affect frequency propagation．

DURING THE WINTER MONTHS（JANUARY and February，1989）propagation con－ ditions change drastically around sun－ rise and sunset，local time．Those sharp＂transition periods＂occur be－ cause the sun is closer to Earth than at any other time of the year and，con－ sequently，solar radiation is at its most intense levels．It＇s the sun＇s radiation that affects the ionization density of the ionosphere，which directly affects the range of useful frequencies．

For example，at sunset－when so－ lar energy is abruptly removed－the range of frequencies that the ionosphere will support plunges rapidly．That effect is especially no－ ticeable during the long winter nights in the northern hemisphere，when the ionosphere is weakened．The op－ posite effect takes place during the hours around sunrise．At that time， the sudden intense illumination of a weak ionosphere causes a rapid in－ crease in the range of useful frequen－ cies．And lastly，during the daylight hours，the range of useful frequencies is higher than at other times．

Radio conditions over long circuits are at their worst when part of the path is in daylight and part in darkness， because the frequencies that are op－ timum over part of the path are radi－ cally different from those over the remainder of the path．On circuits to the east，for example，conditions will be poor several hours before sunset； on circuits to the west，conditions will be at their worst several hours after sunset．That phenomenon，often re－ ferred to as following the gray line， will be discussed later．

General Conditions

Daytime conditions will be good to excellent throughout the forecast

FIG． 1

FIG． 2
period，with DX openings possible from 15 to 28 MHz ．The 10 －and $11-$ meter bands will remain open for am－ ateurs and CB DX－ers，and the sel－ dom－used $26-\mathrm{MHz}$ broadcast band will be open from early morning to around midday，local time in the east－ ern United States．The BBC（British

Broadcasting Corporation）and the Voice of America are the principal users of that band．

Nighttime DX conditions will be possible from 6 MHz up to 15 MHz over paths from the southern hemi－ sphere．In general，the best DX will be in the $6-$ to $11-\mathrm{MHz}$ bands．

Get A Complete Course In

ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. \$99.95, postage Included. Satisfaction guaranteed or money refunded.

CIRCLE 181 ON FREE INFORMATION CARD

| 32 Ways to Help |
| :---: | :---: |
| You Oualify for |
| the Job You Want |

Free Facts
Diplomas an
Now at ho
time, witho
experience
for a mone
a.even ge
Associate
send for fr
interests y
CALL
TOLL.-
FREE

Broadcast-band DX will be good to very good at night. During periods when the transmitter and receiver are both in darkness, openings from Europe will occur regularly

Chit-Chat

RFE (Radio Free Europe) and RL (Radio Liberty) were founded in 1949 and 1951, respectively, as independent broadcasting stations. They originally received most of their financing from the CIA (Central Intelligence Agency). However, in 1971, all connections to the CIA were severed and the stations were temporarily financed by the U.S. State Department. By 1973, the BIB (Board for International Broadcasting) was established to ensure the continuity of RFE/RL. The BIB acts as the conduit and auditor of funds appropriated by Congress for the operation of RFE/RL, and is responsible for the general oversight of its operations. In 1985, a third station, RFA (Radio Free Afghanistan) joined RFE and RL with broadcasts in Dari and Pashto.

In all, RFE, RL, and RFA broadcast in 23 languages of the USSR and Eastern Europe. Collectively, their 48 short-wave transmitters are located in Spain, Portugal, and the Federal Republic of Germany. Total power is approximately 7,500 kilowatts and they use about 85 different short-wave frequencies during a season.

Verification (QSL) cards are sent by those stations, and anyone wanting a complete schedule should write to the following address: RFE/RL Engineering, 1775 Broadway, New York, NY 10019.

Mail Box

A number of readers have written asking why it is that during the daylight hours only local mediumwave (broadcast band) stations are audible, whereas at night many distant United States and international stations can be heard by tuning across your AM-radio dial. Although the answer is not technically related to short wave, it is connected to the ionosphere so that interesting phenomenon will be treated here.

Those of you who have been reading this column regularly will remember that the ionosphere actually consists of several distinct layers, including the D, E, and F layers. The D layer is the lowest of the layers, and it exists only during the daylight hours.

Although ionization in the D layer is not generally sufficient to absorb short-wave radio signals, its ionization is high enough to absorb medi-um-wave signals completely.

Figure 1 shows that during the day the broadcast band is absorbed by the D layer, while that part of the broadcast signal that travels along Earth's surface (the ground wave) contributes to the reception of the signal. Therefore, during the day, you get nothing but local stations.

However, at night the story is entirely different. As Fig. 2 shows, the D layer disappears because it's totally dependent upon solar radiation for its existence. And with that absorbing layer out of the way, the sky-wave signal travels to the E layer, which is present in residual amounts at night, and to the F layer, which is always present. Both the nighttime E layer as well as the F layer are capable of propagating medium-wave signals.

In general, the E layer will reflect signals at the lower end of the AM broadcast band (up to about 1000 kHz), whereas the F layer will reflect signals above $1 \mathrm{MHz}(1000 \mathrm{kHz})$.

The maximum distance E-layer-reflected signals will propagate is about 1000 miles, whereas F-layer-reflected signals can cover twice that distance on the first hop. DX from more distant stations involves multiple-hop reflections between the ionosphere and Earth. Such multi-hop propagation can take place from a single layer, or from a combination of both E and F layers.

Those near the east coast of the United States will find that local sunset to several hours after are the best times to try for European mediumwave stations. During those hours it's dark across the Atlantic and still light to the west, minimizing the chances of interference from American stations. On the west coast, the hours immediately before sunrise to a little after are best because American stations are being absorbed in daylight while it is still dark across the Pacific Ocean.

If you are DX-ing European, African, or Asiatic stations, remember that the medium-wave bands in those regions are different from those in this hemisphere. The AM band in those areas extends from 531 kHz to 1602 kHz , and the separation between stations is 9 kHz , not 10 kHz as it is here. There are therefore 119 channels you can try for. R-E

Audio UPDATE

The question of reliability

LARRY KLEIN, AUDIO EDITOR QUESTIONS ABOUT THE RELIABILITY OF audio components turn up regularly in the reader mail at the major hi-fi magazines. And I'm sure that the salespersons at the audio showrooms are occasionally quizzed about the durability of the models or brands under consideration. Test labs are also taken to task for not commenting in their reports on a unit's construction and potential longevity. In general, the writers and editors probably seem unresponsive to such concerns and suggestions, and I'd like to explain why. (By way of citing my credentials for what is to come: I worked as a lab technician/troubleshooter in a audio/test equipment factory for five years, did free-lance hi-fi service work for several years, and for about 20 years I served as the Technical Director of a major hi-fi magazine where I supervised the work of the test laboratory.)

Component longevity

Readers old enough to remember the days when all audio equipment had tubes are no doubt aware of the far greater reliability of today's transistor equipment. Vacuum tubes wear out through normal use; either their filaments blow out or their cathodes run out of electrons. In contrast, transistors have no inherent internal-wear mechanism, and can theoretically go on forever. In addition, one of the major causes of parts deterioration is heat; tube amplifiers run very hot, transistors amplifiers run merely warm.
Although transistors themselves may have a theoretically unlimited life span, we all know that tran-

FIG. 1
sistor equipment does not. What determines whether an audio component will break down prematurely? One factor is the knowhow of the designer. Example: Perhaps 10 years ago I received a press release (with schematic diagram) in my morning mail that announced the first amplifier product of a well-known loudspeakersystem manufacturer. Coincidentally, a friend who was the chief designer of a leading U.S. amplifier company chanced to drop in, spotted the diagram on my desk, and asked to see it. After a brief perusal of the schematic, my friend suggested that the amplifier was going to blow up in large numbers once it got into retail channels. His prediction proved accurate, and the product was subsequently withdrawn from production. Apparently the amplifier's designers hadn't included protection circuits to cope with some of
the practical stress situations encountered in the "field." By the time they determined what was wrong, the amplifier's reputation was shot-along with dozens of output transistors.

But even knowledgeable designers occasionally find themselves in trouble. One best-selling power amplifier had a good reliability record for a year or so, then large numbers began to fail after a month or so of operation. I checked with the company's chief engineer, who told me this sad story: The source of the failure was a small-signal transistor at the input circuit of the amplifier. It seems that after X-number of hours of use, the transistor would develop enough leakage to upset the amplifier's direct-coupled circuit sufficiently to blow fuses. Although the same transistor type had been used without problems in similar circuits for years, there was some-

GENUINE AP PRODUCTS TEST CLIPS AT 1/2 PRICE!
 Act now! Limited quantities! Distributor orders welcome! Unconditionally guaranteed!
 How can we offer genuine AP Products test clips at $1 / 2$ price? An ordering mix-up has left us with a surplus of 25,000 blue AP Products test clips. We're clearing out our entire stock by selling them at $1 / 2$ price! Don't miss this once-in-a-lifetime opportunity! Hurry! Quantities are limited. Included in this special $1 / 2$ price offer are: AP Products ${ }^{\text {sbrand DIP IC Test Clips - For fast, easy DIP testing. }}$ Provides easy access to IC leads. AP Products ${ }^{\text {®brand }}$ Plastic Leaded Chip Carrier Test Clips - Four-sided for safe, effective testing of PLCC style ICs.
 To order send this coupon, along with your check or money order to:
 Cary Distribution
 100-B Woodwinds Industrial Court Cary, North Carolina 27511.
 for more information, or to reserve your order quantities, call 919-460-9016.
 Minimum orders $\$ 20.00$. Distributor orders welcome. Add $\$ 2.75$ shipping and handling per order. Free shipping for orders over \$100.
 Please print clearly, this is your shipping labe:

When pertormance \& price really count.

The Pulse of Dependable Communications...
Grystek Crystals offers their new 16 page FREE catalog of crystals and by the latest automated technology. Custom designed or "off the oscillators. Offering state of the art crystal components manufactured shelf," Crystek meets the need, worldwide. Write or call today!

CRYSTEK CORPORATION
DIVISION OF WHITEHALL CORPORATION
thing wrong with a recent batch supplied by the semiconductor manufacturer. Unfortunately, the defective batch (which passed incoming quality-control tests) had been mixed in with the other similar transistors and the manufacturer had no way of telling which of his finished amplifiers were OK and which had the built-in time bombs. A recall of the entire production run would have been inappropriate because less than 10 percent of the units had the potential problem. I don't know how the manufacturer and his dealers handled the problem but the model remained in the line and in the long run sold very well.

Incidentally, I've been told that the particular "timed" self-destruct problem resulted from manufacturing fault that causes a sort of electroplating process within the transistor. There is a slow transfer of material from one internal element to another until the transistor no longer operates. Capacitors, for different reasons, can also become timed destruct mechanisms. It's not uncommon for a specific brand and value of capacitor to have 75 - to 100 -percent failure rate, but only after months or even years of use.

Infantile mortality

Wouldn't the finished-product test procedures used by all reputable manufacturers have revealed those defective transistors? Unfortunately, no. In the absence of a special test, that kind of transistor problem only shows up after prolonged use. No manufacturer is going to tie up newly built equipment on the heat rack for hundreds of hours when his dealers are clamoring for shipment.

Luckily, most product failures take place during their first 24 hours of operation. Quality-control engineers refer to that as "infantile mortality." Obviously, any reasonable manufacturer would rather have a newly built component fail on his heat rack, than in the customer's home. The better heat racks enable amplifiers to be hooked up with appropriate line voltages, loads, and input signals, which are then automatically cy-
cled to significantly stress the amcontinued on page 111

Antique Radios
 Loudspeakers and things.

RICHARD D. FITCH, CONTRIBUTING EDITOR

IN MOST INSTANCES, YOU WON'T BE able (or permitted) to plug in or make any tests on a set that you might want to purchase, so your decision must be based entirely on your visual inspection. Actually, being able to plug in a set isn't really that important-there have been only two sets that I was able to listen to before buying. If the set has a worn line cord, as practically all do, you wouldn't plug it in anyway. Suppose you plug in a prospective set and it doesn't light up at all. Would you reject it? If you did, you might be making a big mistake. I always prefer to repair a radio or TV that's "dead,"rather than one with distorted or intermittent sound, or a wavy picture.

Restoration

I've got a Philco Model 650, from about 1936. Over 50 years old, the set shows its age. Having a collection of antique radios, I bought the set (the left one in Fig. 1) just to get a part for another set (the right one in Fig. 1). I don't think that $\$ 20.00-\$ 25.00$ is too much to pay for a parts set to get a major component. What should we do with what's left over? Well, let's restore it! Sometime in the future, I'll bet that this derelict will be the antique radio of the month.

The cabinet has a lot of damage, especially to the veneer, but we won't get into any woodwork this month. We'll concentrate on getting it working.

Not only is the veneer damaged, but the frame is coming apart also. The grille cloth is worn and torn, there is a knob problem, and the escutcheon is missing. There's

FIG. 1
nothing I hate more than finding an antique radio with the escutcheon missing. It's like taking its identity away-and I won't be able to make one as easily as I have for some other radios.

Besides the multi-band dial, there's also the Philco shadowmeter tuner-that is going to be a tough escutcheon to make. I'll have to get a photo of the same model to copy it. As you can see, this Philco has every defect that an antique radio can have. It would take a true antique radioer to see any possibilities in that mess.

Dynamic loudspeakers

The Philco Model 650 has a component problem: the loud-
speaker, or the lack of one. The set was purchased for the sole purpose of getting the electro-dynamic loudspeaker for another radio of mine in which the speaker had a damaged voice coil and cone, but the field coil was still intact. Since the field coil (or a substitute) must remain in the circuit (for the Philco 650, but not all antique radios), I think I'll put the damaged speaker in the bottom of the cabinet, so that I can at least connect the field coil.

The purpose of the field coil is primarily to create an electro magnet. On sets where the field coil gets its DC voltage from a separate source, or from a battery, as in most auto radios, it can be discon-
nected when replacing with a per-manent-magnet loudspeaker. However, in most antique radios, the field voltage is taken right from the set's power supply, so the field coil is actually shown schematically as part of the power sup-ply-removing it would disable the power supply.
In a way, using the field coil in that manner was an economy move by the early radio manufactures. For us antique radioers, we would rather see a separate choke coil installed. Then we could replace the electro-dynamic loudspeaker with a permanent-magnet type by just disconnecting the field leads. The field coil could then be discarded, even though it was rarely the cause of trouble.
The last time I made that statement about the durability of field coils, it drew considerable reader response from radiomen who were not in complete agreement. I thank all who took time to correspond, even just to disagree. Many of the readers' comments were very educational. However,
looking at my collection of antique radios, there's not an open or shorted field coil in the lot.

Yes, an open can occur in the winding of the field coil; a resin block, corrosion, overloading, or even a faulty speaker plug can give that indication. If the field coil is part of the B supply, it will completely disable the receiver.

Often the field-coil winding gets its voltage from a separate source or rectifier. In that case, there may be a weak signal from the loudspeaker, even though there is an apparent open associated with the loudspeaker field-coil winding. The slight residual magnetism is the cause. So, when you make a cold continuity test on a suspected open field coil, be sure to include all of the connecting wires and plugs. Also, be sure to set your ohm meter to the proper range; some field coils have resistances up to 2000 ohms.

If an open is found, and it is definitely in the field winding, remove some of the insulation where the leads enter the coil.

That is a vulnerable spot, and often the trouble is there. You can then make the necessary repairs and replace the insulation.
Now, if you can't repair the field coil, or if the cone or voice coil are beyond repair, a replacement loudspeaker must be found. You may have to buy a whole receiver just to get the proper electro-dynamic loudspeaker. All electro-dynamic loudspeakers are not interchangeable, so be sure to compare them before making substitutions. If you can't find a suitable substitute, you'll have to go with a permanent-magnet type.

On most units where the field coil is part of the B supply, you will be able to install a choke coil as a substitute. To do that, you will have to know the resistance of the field coil you are replacing. Then obtain a choke coil with about the same DC resistance. Usually a choke coil having an inductance of anywhere from 3-8 henrys will be suitable; even one that is slightly more or less might be OK. When a substitute choke coil has less resistance than the field coil, the operating voltages throughout the receiver may increase over what they normally were.

Besides the two aforementioned field-coil uses, they sometimes had another use. An extra wire from the field coil could be used to supply negative C bias voltage for the receiver. So you can see that there is no easy way to just remove an electro-dynamic loudspeaker and install a permanent-magnet unit. Each receiver will have to be studied to determine what will safely replace a unit that can't be repaired.

Going back to the Philco 650, that console was directed toward those who wanted all that was available in a radio at that time. Besides being a superhetrodyne, the set included the Philco shadow tuning. Also, there were provisions for short wave and tone control. That is a lot of radio. Everything appears to be in place and in fair condition. The multi-band superhetrodyne with eight tubes and push-pull output should have an excellent tone and provide some fine listening. How much will it be worth when restored? I'd say about $\$ 200.00$.

2645T-117 PRACTICAL IC PROJECTS YOU CAN BUILD..... $\$ 10.95$. Dozens of fullytested, ready-to-build circuits you can put together from readily-available, low cost IC's! There are a total of 117 IC circuits ranging from an audio mixer and a signal splitter to a tape-deck amplifier and a top-octave generator organ! From TAB Books. To order your copy send $\$ 10.95$ plus $\$ 2.75$ shipping to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 117620240

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 890.00$ per each insertion.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500B Bi-County Blvd., Farmingdale, NY 11735.

AN INTRODUCTION TO BASIC PROGRAMMING TECHNIQUES. This book is based on the author's own experience in learning BASIC and also in helping others, mostly beginners to programming, to understand the language. Included is a program library of programs that the author has actually written and run. Order your copy today. Send $\$ 5.00$ plus $\$ 1.25$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240 ,Massapequa Park, NY 117620240.

BECOME A WHOLESALE DEALER FOR all types of security electronic equipment and more. Controls, motion detectors, switches, sirens, CCTV, etc. Buy wholesale and make extra money reselling or installing alarm and surveillance systems. System examples and installation tips. Also built-in sound systems, intercome, vacuum systems. Call toll-free for catalog or write to: ACS SUPPLY CO. INC., 2531 Jefferson NE, Albuquerque, NM 87110. 1-800-545-6286. \$9.95, + 3.00 Postage and handling if COD.
CIRCLE 176 ON FREE INFORMATION CARD

THE MODEL WTT-20 IS ONLY THE SIZE OF
A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to $1 / 4$ mile range. Adjustable from $70-130 \mathrm{MHZ}$. Complete kit $\$ 29.95$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM
TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away! Adjustable from $70-130 \mathrm{MHZ}$. Use with any FM radio. Complete kit $\$ 29.95$ + $\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

THE CHALLENGER 100 SERIES of digital panel meters are new high quality, low cost $31 / 2$ digit meters and come in LCD and LED versions. They are direct replacements for Modutec's "Big Little ${ }^{\text {TM }} 100$ series. The Model 130 includes a bezel. High linearity analogdigital converters provide 35 PPM reference stability. Linearity is $\pm 1 / 2$ count across the entire range. Price: $\$ 39.50-49.50$ (depending on model). VISA, M/C welcome DIGIMETER, INC., 512 Valley Way, Milpitas, CA 95035. (408) 946-9090, ext. 730, FAX: (408) 946-9190.

CIRCLE 187 ON FREE INFORMATION CARD

PANASONIC CABLE CONVERTERS DIST., Wholesale and Retail Scientific Atlanta and Panasonic model 140N 68 channel converter \$79.95, Panasonic Amplified Video Control Switch Model VCS-1 \$49.95. Scientific Atlanta Brand new Model \#8528 550MHZ 80 Channels Converter \$89.95. Video Corrector (MACRO, COPYGUARD, DIGITAL) ENHANCER \$49.95. We ship to Puerto Rico, Caribbean countries, \& So. Amer. Write or call BLUE STAR IND., 4712 AVE. N, Dept 105, Brooklyn, NY 11234. Phone (718) 258-9495.

NEED QUICK TURNAROUND ON CRYSTALS? TRY OUR E.O.D. (EMERGENCY ORDER DEPARTMENT) AND GET JAN QUALITY and STABILITY, PLUS LOW PRICES!
 You benefit from 23 years of manufacturing quality crystals for industry, military services, radio amateurs, citizen band. and experimenters
 FOR FREE CATALOG CALL OR WRITE: JAN CRYSTALS P.O. BOX 06017 FORT MYERS, FL 33906 (813) 936-2397

TOLL-FREE: 1-800-237-3063

IN FLORIDA: 1-800-226.XTAL
FAX ORDERS: 1-813-936-3750
CIRCLE 104 ON FREE INFORMATION CARD

BeanFCC LCENSED
 ELECTRONIC TECHNICIAN!

No costly School. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Computers, Radar, Avionics and more! You don't need a college degree to qualify, but you do need an FCC License. No Need to Quit Your Job or Go To School cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

COMMAND PRODUCTIONS
FCC LICENSE TRAINING, Dept. 90
P.O. Box 2824, San Francisco, CA 94126

Please rush FREE details immediately! NAME
ADDRESS
94.

CARRIER CURRENT continued from page 64

FIG. 6-THE PC BOARD for the FM receiver is installed as shown. Notice how the voltage regulator is mounted to the bottom of the cabinet; the cabinet serves as a heat sink.

- ICl pins 1, 2, 4-6, and 8 to ground, and IC2 pins 2-10 to ground: no shorts (more than 500 ohms).

Set all potentiometers at halfway, apply DC power, and check for:

- Across C25: 16 volts (exact voltage depends on Tl).
- IC3 pin 6: 12 volts.
- IC3 pin 5: 6 volts.
- Q2 collector: 7 volts.
- Q1 emitter: 9-10 volts.
- IC2 pin 7: 10-11 volts.
- IC2 pin 8: 10.5 volts.
- IC2 pins 2 and 3: 4 volts.
- IC1 pins 1 and $2: 11$ volts.
- IC1 pin 5: 4 volts.

If everything's OK, connect a speaker to the output of either receiver. Apply power and continue:

AM receiver-Set R10 at about $2 / 3$ open (to get between 6 and 7 volts across C15). Apply a l-millivolt, 30\% amplitude-modulated signal at 280 kHz between Cl and ground. If no signal generator is available, connect a long (25 feet or so) piece of wire to that point and try to pick up some noise from an appliance, etc. peak C2 and C 4 for maximum audio output. Adjust R5 so that the audio output stays relatively constant over a range of inputs between 1 millivolt and 1 volt. R5 will affect the receiver's gain,
so don't set it too high. Terminate the detector output terminals with a 1 K resistor for that test.

FM receiver-Set R9 at midpoint and apply a 1 -millivolt modulated signal with $40-\mathrm{kHz}$ deviation, and then adjust R9 for minimum distortion. If no generator is available, set R9 at midpoint; you should hear a hiss in the speaker with no input signal. If possible, verify the frequency response of the input network by connecting a scope to pin 8 of ICl and applying a CW signal (unmodulated) to the junction of Cl and C 2 . The signal should be low enough so that no more than 0.5 volts peak-to-peak appears at that pin, and also so that D1 and D2 do not conduct. Vary the signal frequency between 200 and 350 kHz , and plot the response (keep the input level constant). You should get $\pm 1 \mathrm{~dB}$ flatness or better between 240 and 330 kHz . If not, try adjusting the value of C3, C4, and C5 as required.

The boards are mounted as shown in Figs. 5 and 6. Another alternative is to install the receiver board and power supply inside an old speaker cabinet and use the existing speaker. Sometimes a speaker can be purchased for less than it might cost for just a project case alone.

R-E

A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

THE ATABI ST

Who needs an IBM PC

INTEL's 80386
 Digging decper

On-The-Go Computing

Z80 computing is not dead! British inventor Sir Clive Sinclair has introduced a new laptop to U.S. computer users. Sir Clive's Z88 features a CMOS Z80, 32K RAM, eight-line by 106-character supertwist LCD display, operation from four AA cells, a built-in serial port, and three slots for memory expansion.

The machine also contains 128 K of ROM-based software, including several desktop accessories (clock, calendar, alarm, diary, etc.), and a combination spreadsheet/word processor called PipeDream.

Becausè of its extensive software, capacity for memory expansion, and wide screen, the Z88 is somewhat more powerful than the original laptop, Radio Shack's Model 100. However, the Z88 is incompatible with MS-DOS software, and has nowhere the storase capacity or expandability of typical DOS laptops.
Even so, the Z88 goes for a great price: just under $\$ 600$ for the basic unit with 32 K of RAM (only 20 K of that is usable, however). Not coincidentally, that's Radio Shack's current price for the 32 K Model 102 (a cosmetically upgraded Model 100).

For purposes of comparison, we examined a Z88, a Model 100, and a Toshiba T1000. The latter is an MS-DOS machine. Major features of the three are shown in Table 1.

The $\mathbf{Z 8 8}$

The Z88 has a rubberized keyboard that provides a surprisingly good feel. Using a setup utility, you can enable a keyclick that lets you know when you've pressed a key far enough. You can also vary the keyboard's repeat rate. However, the screen cannot keep up with the faster rates; the $Z 88$ simply ignores keystrokes it
can't process immediately. Also, the keyboard has no function keys, but it does have an embedded numeric pad. The Z88 also has several unique keys that allow you to use the software efficiently.
One key is labeled with a diamond; it is located in the spot traditionally reserved for the Control key (left of A), and functions with other keys as a Control key.

TABLE 1-FEATURES COMPARED

	Z88	T1000	Model 102
Hardware ${ }^{\text {c }}$			
CPU	Z80 (CMOS)	80C88	80C85
Clock speed (MHz)	N/A	4.77	2.4
RAM (standard)	32 K	512K	32 K
RAM (maximum)	416K	1280K	32K
ROM	128 K	(DOS 2.1)	32K
Keyboard keys	64	82	56
Display matrix size	8×106	25×80	8×40
Display area (sq in)	10.9	27.8	16.2
Tiltable display	No	Yes	No
RGB video port	No	Yes	No
Composite video port	No	Yes	No
Internal modem	No	Option	300 baud
Expansion slots	3	1	1
Disk drive	No	720K	Option
Weight (Ib)	2	6.4	3
Battery life (hr)	20	5*	20
Low-power warning	Yes	Yes	Yes
Auto power off	Yes	No	Yes
Rechargeable	No	Yes	No
Serial port	Yes	Yes	Yes
Parallel port	No	Yes	Yes
Disk drive port	No	Yes	No
Software			
Word Processor	Yes	Yes**	Yes
Spreadsheet	Yes	No	No
Telecom	No	No	Yes
Clock, calendar, etc.	Yes	Yes**	Yes
DOS	No	Yes***	No
BASIC	Yes	No ***	Yes

Notes:

*Without modem and memory card
**Borland's SideKick 1.5
***MS-DOS 2.11 in ROM. GW-BASIC not included

Another key is labeled Index; you can press it at any time to bring up a menu of the currently installed applications programs, along with a list of which applications are currently open. Installed applications include both those in the machine's built-in ROM and those in optional memory cartridges.

You open an application by navigating the Index list with the cursor keys and pressing Enter. Several programs can be open at once; in fact, several instances of the same application can be open at once. For example, you could have a spreadsheet open in one instance of PipeDream, and a business letter in another.

A third special key is labeled Menu; within a given application, pressing it brings up a menu of commands. For example, the PipeDream menu lists the following items: Blocks, Cursor, Edit, Files, Layout, Options, and Print.

Each time you press the Menu key, a new item is highlighted, and a sub-menu of available commands appears beside the menu. As with the Index list, you traverse the command list with the cursor keys, and select the desired item by pressing Enter.

A Help key brings up a brief contextsensitive help message in many situations, and a key marked with a square provides a quick way of switching between applications. For example, []-S brings up the Setup screen; []-P brings up PipeDream; etc. If more than one instance of a program is running, repeatedly pressing the box-key combination will switch among those instances.

The software provides some unusual features. For example, although PipeDream is basically a spreadsheet, it also functions fairly well as a word processor. One neat trick is to set up several columns with narrow margins; text typed in each column will wrap within its marsins. In that way you can create multicolumn documents with ease. 72 columns of text are shown in the middle of the screen; alons the left side is the command menu; on the right is a miniature
preview map of the current page, in which each pixel corresponds to a single character on the page.
PipeDream can read and write text files in WordStar format; it can also read and write Lotus 1-2-3 files, although a number of features are not implemented (macros and graphics, among others).

You can also use PipeDream as a miniature database; a sort command allows you to sort by column. Search and Replace commands are included.

The software also includes a simple calculator, a calendar display that can work with a diary to schedule appointments, and a flexible alarm that can alert you to single and repetitive events. (The Z88 has a battery-backed clock/calendar.) Another "pop-down" shows the current time and date. In addition, a file manager lets you manage files in the various memory banks.
A version of $B A S I C$ called $B B C B A S I C$ is also included. It's fairly powerful, but if you're used to any version of Microsoft (or Borland) BASIC, it'll take some getting used to, and you'll definitely have to work to convert programs to run on the Z88.

A dumb-terminal emulator lets you hook up to an external modem and access on-line services. To upload and download files, however, you'll need the special modem, to be discussed shortly. There is a way to send and receive files using just the built-in software, but it's kludgy.
You can print files on an Epson or compatible printer with no problem. The Z88 also includes a special editor for entering codes to activate various features in other types of printers.

Memory management

One inconvenience is that you must treat each bank of memory as a separate unit. For example, you refer to the built-in 32 K bank of RAM as RAM.O. You can add 32 K (\$48) and 128K (\$113) expansion modules; a RAM module in the first expansion slot is known as RAM.1, the second as RAM.2, etc. Three 128K modules could be added, provided a maximum of $32 \mathrm{~K}+3 \times 128 \mathrm{~K}=416 \mathrm{~K}$.
Surprisingly, you can organize files into a hierarchical directory structure, as used by MS-DOS and UNIX. So, for example, you might refer to a file in the second expansion slot like this:

:RAM.2/FINANCE/1989/FEBRUARY/ BUDGET

Two ROM modules are currently available. One (PC Link II, \$78) contains a program for trading files with an IBMcompatible PC. The program comes with a special cable and a disk containing a program you run on the PC. The other ROM module ($\$ 264$) contains a telecommunications program and comes with a
miniature 1200-baud Hayes-compatible modem.

Several user-programmable EPROM modules are also available with capacities of 32 K ($\$ 48$) and 128K (\$113). The Z88 contains a built-in EPROM programmer; using the Filer program, you can save data files to the EPROM. However, you can't access them from there directly; instead, you must copy a desired file from EPROM to RAM to use it.

With only three slots available, you must analyze your needs carefully to get the right combination of features and enough RAM.

The Tandy Model 100

Because for all practical purposes the Model 100 and the Model 102 are identical, we'll refer to both simply as the Model 100. This venerable machine includes an 8×40 line LCD screen, 300baud modem, and five programs: BASIC, Text (editor), Telcom (communications), Addrss (address book), and Schedl (appointment scheduler). The first three provide the machine's real power.

The screen has fairly low contrast by today's standards, but its large characters are easier to read than those of the other machines discussed here. The editor is primitive, but functional. However, to print files, you must send them to another machine, write your own BASIC program, or obtain a commercial or public- domain program.

Because of the Model 100's longevity, there are numerous third-party expansion options, both hardware and software. There is also a wealth of public-domain software, especially on CompuServe. Several books have been written discussing its workings in minute detail, and several magazines devoted to the Model 100 have been published off and on.

Third-party expansion options include RAM and ROM switchins systems that allow you to add as much as a megabyte of memory to the machine. Floppy-disk drives that operate off the serial port are available from Radio Shack and others.

The Model 100 is not as glitzy as the Z88, but it's a solid, bug-free product that is well supported. Many Model 100 users (including yours truly) refuse to upgrade to an expensive MS-DOS machine, even though they could easily justify doing so.

The Toshiba T1000

Based on list prices, this machine is not competitive with the others discussed here. At $\$ 1250$, the 11000 costs twice what the others cost. However, it's resularly sold in big city computer stores and by mail order for about $\$ 750$. That's 25% more than the Model 100 and the Z88, but you get more than 25% more computing power for your money.

For one, you get a full 25×80 screen. And no matter how much you love your Model 100, you lust for a bigger screen.

You also get 512 K of contiguous memory. The other machines can't even count that high. However, that 512 K is volatilewhen you turn the machine off, the RAM contents are lost. (But there is a fix-we'll talk about that shortly.)

The T1000 also comes with a 720 K floppy-disk drive. Althoush external drives are available for the Model 100, they are slow and bugsy. Cambridge Direct advertises the Z88 saying: "No disks. No DOS." However, the user's manual mentions "disc" storage, suggesting that an upgrade may be available at some point. But it would have to run off the serial port also. And external drives are a pain to deal with when traveling.

No modem is included with the T1000, but there is an internal slot for one.

There is another slot for a 768 K memory card. (List price $=\$ 399$; street price $=\$ 270$.) The memory card bridges the gap between typical MS-DOS portables, and the Model 100/Z88 crowd. The reason is that the memory on the card is not volatile, and may be used as a RAM disk (or as EMS 3.2 memory).

It's probably most useful as a RAM disk, because you can load your favorite DOS applications on the RAM disk, thereby providing the equivalent of the ROMbased software in the other machines.

The T1000 normally boots from DOS version 2.11, which is contained in ROM. If you need a later version, you can boot from floppy, or you can format the RAM disk with the DOS version of your choice, and boot from it.

Other than DOS, the only software that comes with the T1000 is SideKick. Most people think of SideKick as a utility program, but it has a fairly good text editor, and better desktop accessories (address book, scheduler, etc.) than either the

Model 100 or the Z88. To provide a complete ranse of full-powered applications, you could install Microsoft Works or PFS: First Choice for about $\$ 100$.

The choice

As a long-time Model 100 owner, I find choosing amons the three excruciating. The Z88's screen provides many more characters per line than the Model 100, but it has only about 67% of the surface area. Consequently, characters are small. The 11000 provides a standard 25×80 work area, and the largest overall screen size. Even so, the Model 100's screen is easier to read.

The Z88 has much more built-in software than the Model 100. For example, even though the Model 100 has a built-in text editor, it provides no way to print files. And a spreadsheet costs an extra $\$ 150$. The T1000 includes a copy of SideKick, whose features exceed those of the corresponding programs in the other machines, but SideKick has neither a spreadsheet nor a communications program.

The Model 100 has a built-in telecommunications program that works with both its built-in modem and its built-in serial port. There is no excuse for not providing a built-in communications program in the Z88. The T1000 is also weakened by that omission.

The big question is whether DOS compatibility is important. If it is, the T1000 is the best buy on the market. It's not as powerful as the 286 and 386 machines, but it costs one third as much.

Disadvantages of the T1000 include limited battery life (about four hours with the RAM card), about 50% more weight, and about 67% more volume.

If you can get by without a DOS machine, it's a tough decision. The Z88 includes more software, and has more usable screen space, but the Model 100's screen is more legible. The base Model 100 has more memory (a full 32 K vs. 20 K in the Z88), and built-in telecomm software. Upgrading the $Z 88$ for 32 K of RAM and the modem/software combo costs more than $\$ 300$; in that price range, you may as well go for a T1000.

Another point to consider is third-party support. Only time will tell whether the Z88 will generate the kind of support that the Model 100 has.

If I were in the market now, l'd probably go for the T1000 with RAM card, and put up with the squashed screen. But as a

Model 100 owner, neither the $\mathbf{Z 8 8}$ nor the T1000 represents a significant enough improvement in design and utility to retire my old machine

The New Norton

Inn any field less than ten years old, it's hard to refer to any printed work as a classic. But Peter Norton's Programmer's Guide To The IBM PC comes as close as anything can. The venerable guide to PC hardware and software has been reissued and renamed the Programmer's Guide To The IBM PC and PS/2.
As you can suess from the title, the update includes much information on hardware and software introduced with and since the PS/2: DOS (3.3 and 4.0), new hardware (VGA, enhanced keyboards, the PS/2 mouse interface), and new BIOS functions. To make room for all the new information, the update drops some information about the PCjr, the PC Convertible, and the XT/286.
The book is both a good read and a good reference. If you're new to the PC world and curious about what's going on inside the box, several introductory chapters give the proper background quickly. If you're an old hand, the multitude of reference charts can help you locate necessary information quickly.
The book isn't perfect; for example, the discussion of keyboards fails to mention that late-model IBM XT's have BIOS support for the enhanced keyboard. And although it provides a good discussion of scan codes, etc., no mention is made of the dedicated keyboard controller used in AT's. So for the most complete information, you'll want to examine IBM's Technical Reference manuals.
The book's co-author, Richard Wiiton, is also author of the excellent Programmer's Guide To PC And PS/2 Video Systems. Both books have found permanent places in my reference library

PRODUCTS REVIEWED

- Z88 (\$599), Cambridge Direct, 1419 Lake Cook Rd., Suite 300, Deerfield, IL 60015. (800) 435-7729. (312) 940-1554. CIRCLE 45 ON FREE INFORMATION CARD - Toshiba T1000 (\$1249), Toshiba America, Inc., Information Systems Division, 9740 Irvine Blvd., Irvine, CA 92718. (714) 583-3000.
CIRCLE 46 ON FREE INFORMATION CARD
- Model 100 (\$599), Radio Shack. CIRCLE 47 ON FREE INFORMATION CARD - Programmer's Guide To The IBM PC and PS/2 (\$22.95), Programmer's Guide To PC And PS/2 Video Systems (\$24.95), Microsoft Press, 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. (206) 882-8080.
CIRCLE 48 ON FREE INFORMATION CARD

the ATARI ST

In the July 1988 issue, we published a letter that berated us for our lack of coverage of machines outside the MS-DOS family. (See pase 16 of that issue.) Actually, in Computer Digest, 50% of the articles published in the past year dealt with a 68000 system; much of the other 50% consisted of articles that had no machine-specific orientation.

Anyway, the author of that letter sang the praises of the Atari line. So we decided to take a look. What follows is an introduction to the Atari family and several of the more interesting hardware and software products available for it.-Editor

Atari's ST was formally introduced at the Winter 1985 Consumer Electronic Show. With 512K of RAM, a 512color video system, an $8-\mathrm{MHz} 68000$, and an under- $\$ 1000$ price tag, the 520 ST caused quite a stir.

Other standard features include a graphical user interface, support for both monochrome and RGB color monitors, a full-function keyboard with function keys and numeric keypad, a two-button mouse, serial and parallel interfaces, a $360 \mathrm{~K} / 720 \mathrm{~K} 3.5^{\prime \prime}$ disk format, second-drive port, and ROM-cartridge port. The ST also includes a blazingly fast (10 MHz) DMA port, and a built-in MIDI (Musical Instrument Disital Interface) port for attaching electronic musical instruments.

The ST line includes four models: the 520 ST, the 1040 ST, the Mega 2, and the Mega 4 of those models. Features are summarized in Table 1.

The four models are highly compatible with one another; in fact, they're nearly identical, with the exception of memory. However, all ST's are upgradable to 4 megabytes of directly addressable RAM.

The major differences between the 520 and the 1040 on one hand, and the Mega machines on the other is that the Mega machines offer detached keyboards, an expansion bus that allows direct access to the 68000 CPU, and a graphics processor (named the "blitter") that provides lightning-fast text and graphics screen updates.

User interface

The ST comes with a graphical operating environment called GEM (Graphic Environment Manager); GEM was written by Digital Research, the company that designed the CP/M operating system a decade ago. GEM is also available for IBM machines.
If you have used Windows or a Macintosh, you'll find working with GEM familiar. Drop-down menus, movable and re-sizable windows, icons, and desk accessories are found on the GEM desktop.

The Mac and the ST handle desktop accessories in slightly different manners. On the ST, all desk accessories are loaded into RAM when you boot, so the system disk is no longer required. By contrast, the Mac must load an accessory from disk each time it is needed.

TABLE 1-SYSTEM CONFIGURATIONS

Model	Standard Memory	Monochrome System	Color System
520	512 K	$\$ 799$	$\$ 999$
1040	1024 K	$\$ 999$	$\$ 1199$
Mega 2	2048 K	$\$ 1699$	$\$ 1899$
Mega 4	4096 K	$\$ 2399$	$\$ 2599$

GEM does not support multitasking, but "switching" programs are available that allow you to load as many as eight programs in RAM simultaneously. And several telecommunications programs are available that allow you to perform file transfers by modem while using other software. If you need real multitaskins, versions of $\mathrm{OS} / 9$ and Idris (a UNIX look-alike) are available.
GEM, along with the BIOS and GEMDOS (the ST's disk operating system), are contained entirely in 192K of ROM. Because the entire operating system is contained in ROM, booting an Atari takes only about five seconds.

GEMDOS is quite similar to MS-DOS. In fact, if you hate graphical interfaces, you'll be glad to know that an MSDOS style command-line interface is available for the ST. Batch files, I/O redirection, etc., are all available through various software packages.

The Atari ST can read and write IBM-format 720K 3.5" diskettes, as well as 360 K and $720 \mathrm{~K} 5.25^{\prime \prime}$ diskettes using an optional external $5.25^{\prime \prime}$ drive. If you don't need IBM file compatibility, you can squeeze even more data on a disk: 400 K and 800 K 10 -sector/track formatting programs are available commercially and in the public domain. As on IBM systems, floppy-disk drives have a 250 kilobit/second data-transfer rate.

Printed output

An external part of the ST's operating system is GDOS, a virtual device interface designed to provide high-quality output on a variety of printers. In use, GDOS can, for example, map a desktop-publishing layout on a 32 K by 32 K grid. The image is then scaled down to a form that is suitable for either Atari's laser printer, or an inexpensive 9or 24 -pin dot-matrix printer. Figure 1 shows a sample output from a 9-pin Panasonic KX-P1091i printer. The image was created using Timeworks Desktop Publisher.

KEY ACCOUNT ACTIVITY

```
In a special sales meeting held last Monday we decided to focus on our top five customers in each region. We decided to start a campaign to assure that these KEY customers are being serviced regularly. We also discussed a special promotion idea that Dan Johnson has been working on There will be another meeting next Monday to finalize this program.
```


We
breal adve salua the FIG. 1-SAMPLE OUTPUT created in Timeworks desktop publisher and printed on an inexpensive Panasonic dot-matrix printer.

The Atari laser printer provides high-quality 300 DPI output at low cost ($\$ 1899$ list). The SLM804, shown in Fig. 2, was the first "dumb" laser printer, a concept subsequently imitated by Apple.

Most laser printers have built-in intelligence, and are usually built around 68000 or 68020 microprocessors and a big chunk of RAM. In order to keep costs down, Atari let the RAM and the CPU in the computer do the "thinking" for

FIG. 2-THE SLM804 LASER PRINTER costs less than $\$ 2000$ and provides a resolution of 300 dots per inch.
the printer too. That keeps the cost down.
One reason for the SLM804's high speed is that it connects to the computer via the DMA port, rather than an RS-232 port. That increases speed by about a factor of ten.

Connecting up

The ST's cartridge port provides an interface for a wide variety of accessories, including sound and video digitizers, ROM-based desktop accessories, hardware RAM disks, scanners, etc.

One exciting use for the cartridge port is to turn an ST into a Macintosh. The secret is to use a device called the Magic Sac, which lists for $\$ 149.00$. (A set of Apple ROM's is also required.)

The Masic Sac consists of a standard ST cartridge with two empty sockets for the Mac's 64 K operating system in ROM. You can buy the ROM's at your local Atari dealer for $\$ 40-\$ 60$ (or $\$ 80-\$ 120$ from an Apple dealer). A new version of the Sac should be released by the time you read this; the new version will allow use of the new 128 K ROMS, thereby making it possible to run HyperCard on the ST! The Magic Sac works by disabling the ST's operating system and replacing it with the Macintosh operating system contained in the ROM's.

Getting the Masic Sac up and running is as simple as plusging the cartridse in and running the ST software that activates it. The difficult part is transforming Macintosh software to the ST disk format. To help solve that problem, the Masic Sac includes a null modem cable and filetransfer software for both the Mac and the ST. The software allows you to transfer any unprotected Mac disk onto a custom-format (called "Masic format") ST disk. Of course, to transfer files by that means, you must have a real Mac physically present (but see below). A "Masic" disk can only be recognized by the Atari when the Sac cartridge is activated.

The Mac is extremely picky about when you can remove a disk from a drive; in fact, you must explicitly ask the machine to eject a disk, or you risk irrecoverable damage to the data on the disk.

The ST does not have the ejection hardware, so the Masic Sac software informs you when it is safe to remove a disk by flashing a large A or B, depending on which drive the disk is to be ejected from.

It took more than a year to develop the Masic Sac
software, and the software has been revised numerous times. The software is so well done that the ST can now run programs that will not work on the $\$ 5000 \mathrm{Mac}$ II! In fact, some Macintosh developers test their programs on Magic Sac equipped ST's as a test of compatibility! Overall, the Masic Sac is approximately 90% compatible with a Mac SE.

The Magic Sac has several advantages over a real Mac. For one, the ST's 640×400 screen provides almost 50% more resolution than the Mac's 512×342. The difference is noticeable in MacWrite, for example, where the onscreen ruler is visible only up to the 6" mark on a real Mac, but goes past $8^{\prime \prime}$ on the ST.

FIG. 3-ATARI'S MEGA 4 includes four megabytes of RAM, an 8$\mathrm{MHz} 68000,3.5^{\prime \prime}$ floppy-disk drive, and the GEM operating system.

Another advantage is the ST's increased speed, which makes mouse movement and scrolling faster.

Use of available memory is another improvement. A four-megabyte Mega 4, shown in Fig. 3, will function effectively as a 3.8-megabyte Mac. In addition, the Mac's modem port is fully supported and properly written telecommunications programs (Red Ryder, for example) will run normally.

As mentioned earlier, the ST cannot read or write Mac-intosh-format disks. However, in addition to the Magic Sac, Data Pacific markets a product called The Translator that allows the ST to read Mac disks via an external disk drive. The biggest advantage of the Translator is that a Mac need not be physically present to transfer software.

The problem with reading Mac disks in an ST is that Macintoshes have variable-speed disk drives, whereas the ST uses constant-speed drives. So rather than vary the

The Atari in Europe

Because of Atari's past connection with game machines, the company has concentrated (and continues to concentrate) on the European market. Those efforts have been so successful that the Atari ST is a top-selling computer in West Germany, and is consistently in the top three in England, France, and the Scandinavian countries.
In all of those places, the ST is viewed as a professional system; it enjoys widespread use in businesses and universities. In fact, the number of ST computers sold in West Germany (roughly 400,000) outnumbers American sales significantly. But the company is now starting to focus on the American market.
speed of the drive, the Translator varies the rate at which bits of data are sent to the drive. The variable data-transfer rate even allows you to run copy-protected programs on an ST. The Translator is completely invisible to the ST when turned off, and it won't interfere with any ST software. The Translator is rather expensive at $\$ 279.95$ list, but it's still cheaper than buying a Mac.

The Macintosh simply won't work with non-Apple printers. Another Data Pacific product called Epstart (\$45) allows you to use an Epson (or compatible) printer to print Macintosh text and graphics. Epstart is a Macintosh desk accessory that can be installed and forgotten. Epstart works by fooling the Mac into thinking that an Imagewriter is present; the program intercepts and correctly formats all printer output, including screen dumps, graphics, and text. In fact, I think my Panasonic printer produces output superior to the Apple printer, which costs more than twice as much. As for compatibility, programs including MacPaint, MacDraft, Microsoft Word, and PageMaker produce good, clean output without problem.

IBM emulation

Using an \$89 product called PC Ditto, the ST can also run IBM software. PC Ditto turns the ST into a 99% compatible IBM clone that can run Lotus 1-2-3, Flight Simulator, DESQview, the Norton Utilities, GW-BASIC, and most other programs. Mouse drivers are included to let the ST mouse emulate a Microsoft mouse.

Because the PC and the STT are based on microprocessors from totally different families, PC Ditto is a software emulator. Every 8088 machine instruction must be translated into an equivalent 68000 instruction or series of instructions. Because of that translation, PC Ditto generally runs at about 80% of the speed of an XT. For that reason, PC Ditto works best with non-graphics software. Figure 4 shows PC ditto running Lotus 1-2-3 and SideKick.

At least two companies are working on hardware emulators based on 8088-compatible microprocessors; these emulators have expansion slots that can accept IBM cards.
c8: (22) 257.9
四䋨

FIG. 4-RUN IBM SOFTWARE (Lotus 1-2-3 and SideKick, among others) on an Atari using PC Ditto.

Software outlook

If you're concerned about the so-called lack of business software for the ST, file-compatible Lotus and dBase III + clones are available; the clones also provide full support for mice and windows.

Rates: Ads are $21 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}$. One insertion $\$ 900$. Six insertions $\$ 875$. each. Twelve insertions $\$ 845$. each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Computer ads are accepted for this Admart.

A PRACTICAL INTRODUCTION TO MICROPROCESSORS

BP123-Introduces microprocessors by having the reader construct a very simple microprocessor circuit that he can experiment with and thus hopefully gain a clear insight into this complex subject. The completed unit is only
 intended as an education aid, but can be built inexpensively and many of the parts can be reused for other applications later. Get your copy for $\$ 5.00$ plus $\$ 1.00$ for shipping in the U.S. from Electronic Technology Today Inc., P.0. Box 240, Massapequa Park, NY 11762-0240.

SECRETS OF THE COMMODORE 64

BP135-A beginners guide
Secrets of the Socrets of the
COMMODORE 64 to the Commodore 64 presents masses of useful data and programming tips, as well as describing how to get the best from the powerful sound and graphics facilities. We look at how the memory is organized, random numbers and ways of generating them, graphics-color-and simple animation, and even a chapter on machine code. Get your copy today. Send $\$ 5.00$ plus $\$ 1.25$ for shipping in the U.S. to Electronic Techology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

On the desktop publishing front, several powerful programs are available that can drive PostScript and HP LaserJet laser printers.
Of course, a multitude of games is available, and entertainment software for the ST meets or beats that found in the arcade. The ST has a joystick port in addition to the mouse port, but for two-player games, the mouse port can also be used as a joystick port. Many of the recent games that have become available use the ST's large RAM size to store digitized graphics and sound to provide a new level of sophistication.

Musical applications

One of the ST's strongest areas is music. Popular rock groups (The Pointer Sisters and Fleetwood Mac, amons others) use Atari computers; the computer's low price make computerized musical editing and creation available to budget-conscious hobbyists as well.

The ST's musical abilities come about through its MIDI port, which allows as many as sixteen different instruments to be controlled. That includes synthesizers, drum machines, special effects generators, and digital samplers.

For example, Atari and Yamaha Music teamed up to produce a home electronic music system consisting of an Atari 520ST, a Yamaha keyboard, and software that allows composing, tapeless multi-track recording and playback. The system lists for under $\$ 1000$.

To get up to speed in music theory, you may want to check out Alfred Publishing's Practical Theory and Music Achievement Series. It runs on the 1040ST.

Conclusion

In this article, we have tried to indicate why the Atari line of personal computers should be taken seriously by serious computerists. The ST combines high quality, low price, and extensive third-party support. Add-on products allow it to run software from the IBM and Macintosh families. (1)

Vendors
Atari Computer Corporation 1196 Borregas Avenue Sunnyvale, CA 94086 (408) 745-2000 Yamaha Music Corporation, USA Consumer Products Division 6600 Orangethorpe Avenue Buena Park, CA 90620 (714) 522-9240 Alfred Publishing Co., Inc. 16380 Roscoe Blvd. Van Nuys, CA 91410 (818) 891-5999
Timeworks Inc. 444 Lake Cook Road Deerfield, Illinois 60015 (TimeWorks Desktop Publisher, \$129.95)
Data Pacific Inc. 609 Speer Blvd Denver, Colorado 80203 (Magic Sac, \$149) (Translator, \$279) (Epstart, \$45)
Avante Garde Systems 381 Pablo Point Drive Jacksonville, Florida 32225
(PC Ditto, \$89.95)
Word Perfect Corp.
288 West Center ST. Orem, UT 84057 (Word Perfect 4.1, \$395)
\section*{Antic Software} 524 Second St.
San Francisco, CA 94107
(CADD 3-D 2.0, \$89.95)

An operating system is like the foundation of a house: it provides a base on which the entire structure rests. In a house, several sub-systems (plumbing, electrical, heating and cooling) interact to provide an environment for living. When we flip a switch to tum on a light, for example, we don't need to understand or even know about the electrical circuits involved.

Likewise, an operating system has both visible and invisible components. For example, when you copy a file from a hard disk to a floppy disk, a complex system of software functions provide low-level (raw serial data), mid-level (track and sector), and high-level (file) access to data on the disk.
More visible, but no less important, is an operating system's user interface. It translates your COPY command into something the underlying components can understand, so that you don't have to keep track of the tracks and sectors that comprise a file yourself. Thus, copying a file is like flipping a switch.

In this article we'll show how architectural features of the 80386 microprocessor make efficient multi-tasking operating systems possible.-Editor

Time slicing is a technique by which a number of tasks appear to execute on a computer simultaneously. In a simple time-slicing system, each of several tasks is allowed to execute sequentially for a specific amount of time-a time slice. If the time slices are of the proper duration, all tasks appear to execute simultaneously.

Time-slicing has been used, on mainframes and minicomputers, since the 1960's. It is only recently, however, that microprocessors became powerful enough to make time-slicing multi-tasking operating systems practical.

Depending on the operating system, the tasks themselves may be parts of a single program, different programs run by the same user, or different programs run by different users. It is up to the operating system to provide each task with the illusion that it can use any and all resources of the machine throughout the duration of its time slice.

The size of each slice (i.e., the frequency at which tasks
are switched) has a great affect on system performance. If you switch tasks too often, system overhead becomes so great that the tasks don't have enough time to do any useful work. But if you don't switch often enough, the responsiveness of a system suffers. For example, if you switched tasks every 10 seconds, typing in a word processor would be frustrating, to say the least!

For the duration of each time slice, the operating system assigns the real processor to a "virtual processor." Each virtual processor has a complete environment consisting of a set of microprocessor registers and information describing that task's use of memory. That information is specified in a Task State Segment (TSS).

Task state segments

A TSS is shown in Fig. 1. It is one of several data tables defined by the 80386. The data tables are sometimes referred to as task control blocks. The purpose of the TSS is to save the state of a task's virtual processor while it is not actually running on the microprocessor.

The task control block consists of two parts. The lower part holds the values contained in the virtual microprocessor's registers. The upper part is defined by the operating system, and holds task-related information, including I/O privilege level (discussed shortly), and other information.
To create a new task, the operating system creates a TSS and initializes each slot in the table to the values the task should have when it besins execution.

The processor keeps a selector for the current task's TSS in an on-chip Task Register (TR). The TR has a visible 16-bit selector and an invisible selector cache. The selector cache is loaded automatically when the selector is changed. We described selector-cache loading in Part 1 of this article (last month).

To switch tasks, the operating system executes a JMP or CALL instruction; the target of the instruction is a selector for the new task. For example, the processor executes the Jump TSS instruction by storing its registers in the current TSS and then loading the TR with the selector specified in the instruction. The microprocessor can now determine

FIG. 1-A TSS IS ONE OF SEVERAL data tables defined by the 80386. The purpose of the TSS is to save the state of a task's virtual processor while it is not actually running on the microprocessor.
the actual memory address of the new TSS, because that address is part of the TR descriptor.

The processor then loads its memory registers with the values in the new TSS. Execution continues with the instruction that is pointed to by the new task's instruction pointer. The old task, including the pointer to the next instruction to be executed in that task, have been stored in that task's TSS. Execution of the old task can resume in the same manner; it is done by issuing a JMP to that task's TSS selector.

In addition to the jump method of loading descriptors described above, two instructions are available for loading and storing the Task Register directly: LTR and STR, respectively. LTR is used to load the TR with a pointer to the TSS data area prior to the first use of JUMP TSS. That ensures that the execution of JUMP TSS stores the current processor state in a valid area of memory.

Memory management

The physical address space of most computers is organized as a simple array of bytes. However, with the development of Memory Management Units (MMU's), computer architectures began to distinguish between the physical address space implemented in hardware, and the logical address space seen by a programmer. It is the MMU's job to translate the logical addresses seen by programs into physical bus addresses. (The 376 embedded processor does not need virtual-memory management so some MMU features are not included.)

The address space of the 386 Microprocessors can be viewed in several ways: flat, segmented, paged, and pased segments.

Flat: The address space is an array of bytes with no additional structure. The logical address is equal to the physical address, so no MMU translation occurs.

Segmented: The logical address space consists of a number of segments, each of which can vary in size. Each segment is specified by a selector and a descriptor, as discussed in Part 1 of this article.

Paged: The logical address space consists of many relatively small fixed-size pages.

Paged segments: The logical address space consists of a segment and an offset. The logical address specifies a linear address; however, each linear address is translated into a page and an offset into that page.

Each type of address space is suitable for a different type of task. A one-to-one correspondence between physical and logical addresses requires the least operating system overhead. A paged-segmented structure is more complicated, but more flexible.

The 386 and 386SX microprocessors can support any of the four models, but the 376 supports only the flat and the segmented models.

Segments

A task's logical address space consists of one or more segments. The 80286 allowed segments with a maximum length of 64 K bytes, but the 80386 allows four-gigabyte segments.

Each segment is defined by a descriptor. Descriptors are stored in the shared Global Descriptor Table (GDT), which all tasks can access, and in a Local Descriptor Table (LDT), where they are more private.

Swapping is a method of sharing memory, when there is more code, data, or both, than physical memory. An operating system that employs swapping keeps track of how often each segment is used. When there is a memory shortage, the least-used segments are stored on disk; the freed-up space can then be used by the current task. OS/2, for example, currently uses segment swapping as the basis for its virtual memory management.

Because 80286 segments are limited to 64 K , it is possible to perform memory management by swapping sesments. With the 386 , however, segments can be extremely large, so swapping on a segment basis is not feasible. That is the orisin of pasing.

Paging

In the 386 family, there are three kinds of address space: logical, linear, and physical. Depending on which mode the microprocessor is operating in, all three may be identical, two of the three may be identical, or all three may
differ. As discussed above and in Part 1, the logical address space is what the programmer sees; in protected mode, selectors in the microprocessor's segment registers refer to the logical address space by way of descriptors, special tables in RAM.
When paging is not enabled, the linear and physical addresses are identical. When paging is enabled, any given 4 K chunk of linear memory may correspond to any 4 K chunk of physical memory.
The 4 K pase size is convenient. The reason is that the small page size prevents a common memory-management problem: memory fragmentation that occurs when variable-sized segments are used for memory allocation. When a segment-based operating system needs to make room for a large segment, and only small areas of free memory are available, the operating system must rearrange the programs and data currently in memory to provide one contiguous chunk for the desired segment. Doing so takes time that degrades system performance.

Another complication that a segment-based operating system must contend with is whether to place a new segment into the first memory area the operating system finds, or into an area that is close in size to the new segment. Those strategies are known as first-fit and bestfit management, respectively. With a pasing system, memory contents don't actually have to be moved; rather, tables that indicate the linear-to-physical mapping are updated-a much quicker process.

An 80386 operating system enables pasing by setting the PG bit in control register CRO. When pasing is enabled, the processor translates a linear address to a physical address with the aid of page tables. As on mainframes, page tables are arranged in a two-level hierarchy, as shown in Fig. 2.

Control register CR3 is also known as the Page Table Directory Base; it points to the first entry in a Page Table Directory. A Page Table Directory is one page (4K) lons and contains entries for 1024 page tables. Each page table is one page long; each page table describes 1024 pages. Referring back to Fig. 1, you'll notice that CR3 is stored in the TSS. Therefore, each task may optionally have its own pase table directory.

Figure 3 shows the complete mechanism that the

FIG. 3-HERE IS THE COMPLETE MECHANISM that the 80386 uses to translate a linear address into a physical address when paging is enabled.

80386 uses to translate a linear address into a physical address when paging is enabled. The processor uses the upper ten bits of the linear address as an index into the directory. The selected directory entry contains the address of a page table. The processor adds the next ten bits of the linear address to the page table address. That is then used to select the entry in the page table corresponding to the desired address. Last, the lower twelve bits of the linear address select the desired location in the 4 K page.

Note that all of that pasing information is stored in memory. If the microprocessor had to access the page tables every time it needed to access memory, performance would suffer greatly. So to reduce the overhead of the page-table lookups, the processor automatically caches mapping information for the 32 most recently used pages in an on-chip Translation Lookaside Buffer (TLB), shown in Fig. 3. Only when it does not find the mapping information for a page in the TLB does the processor perform a pase table lookup from information stored in memory. Fortunately, 98-99\% of all address references are TLB hits (i.e., are found in the TLB). When a TLB miss does occur, the processor replaces an older TLB

FIG. 2-WHEN PAGING IS ENABLED, the processor translates a linear address to a physical address with the aid of page tables, which are arranged in a two-level hierarchy.
entry with the new entry, which is likely to be used by the microprocessor again soon.

The on-chip page table lookups do not add to the address translation time. However, due to occasional TLB misses, paging does cause execution time to vary slightly. In a real-time system, where varied execution time would be unacceptable, pasing is not used. The 376 processor, which is designed for embedded and real-time applications, has no pasing mechanism.

Virtual memory management

Virtual memory allows a very large program to be executed as if the entire program was in memory, even though a portion of it is still on disk. For example, with proper management, a computer could run a 2 MB program in a system with only 1.5 MB of memory.

The pase directory and page table entries provide the mechanism. As shown in Fig. 4, the lower twelve bits of each type of entry indicate which pages are in memory, which pages are still on disk, information for decidins which page should be swapped out in favor of a new pase, and whether the swapped page needs to be written back to disk or merely overwritten.

The P (present) bit, if set to 1 , indicates that the entry is present in memory. If the P bit is 0 , then any attempt to access the page will cause a page fault. When a page fault occurs, the microprocessor passes control to a special handler via interrupt fourteen. The interrupt-fourteen handler must read the needed page into memory and return execution to the program. To accomplish that, the handler first determines which page caused the fault. Doing so is easy, because the processor stores that information in CR2.

But what happens if there is no room in physical memory to load another page? Then the handler must decide which page of those presently in memory may be discarded. The handler can't know whether a given page will be needed later on, so it makes an educated suess, based on which page was used least recently.

The A (accessed) bit and the bits available for OS use determine which pages have not been recently used. The A bit is automatically set whenever the processor ac-
cesses any location on a pase; the A bit is only cleared by software. By periodically clearing A bits, the operating system can keep track of which pages are used often, and which aren't.
After the operating system determines which page will be discarded, it must decide whether it must be written back to disk. It does that via the D (dirty) bit, which is set each time the page is written to. So when a page is to be discarded, if the D bit is set, the operating system knows that that page must be written back to disk. If the D bit is not set, then the contents of the page in memory and the page on disk are the same, so the memory image needn't be written to disk.

That method of swapping pages in and out of memory when needed is called demand pasing. Demand pasing is used, for example, by UNIX System V for the 80386. And Phar Lap software offers a set of tools for developins large applications that rely on demand pasing.

Paging is useful in applications other than virtual-memory management. For example, paging can be used to remap memory. Remapping can be used to fill in gaps in physical memory, or to emulate one type of memory with another.

For example, a program called 386 max allows you to fill out 512 K motherboards to the 640 K MS-DOS limit by using paging. The program also allows you to emulate LIM EMS 4.0 memory using extended (physically linear) memory. Similar programs are available from a number of vendors, including Compaq, Quarterdeck Office Systems, and others.

Protection and privilege

The 80386 provides several mechanisms that an operating system can use to protect tasks from one another. We've already discussed one form of protection; that is, the separation of address spaces by segment descriptor tables.

Other protection facilities are based on the notion of privilege hierarchy. At any instant, a task's privilege level is equal to the privilege level of the code segment in which it is executing. A two-bit protection field found in each

31	12	11	10	9	8	7	6	5	4	3	2	1	0
PAGE FRAME ADDRESS $31 . .12$			OS RESERVED		0	0	D	A	0	0	$\frac{\mathrm{U}}{\mathrm{S}}$	$\frac{\mathrm{R}}{\mathrm{W}}$	P
Page Table Entry (Points to Page)													
31	12	11	10	9	8	7	6	5	4	3	2	1	0
PAGE FRAME ADDRESS $31 . .12$			$\begin{aligned} & \text { OS } \\ & \text { RESERVED } \end{aligned}$		0	0	D	A	0	0	$\frac{U}{S}$	$\frac{R}{W}$	P

FIG. 4-THE PAGE DIRECTORY AND PAGE TABLE ENTRIES. The lower twelve bits of each type of entry indicate which pages are in memory, which pages are still on disk, information for deciding which page should be swapped out in favor of a new page, and whether the swapped page needs to be written back to disk or merely overwritten.
descriptor and selector specifies four privilege levels. Level 0 is most privileged; level 3 is least privileged. Level 0 is for the operating system; level 3 is for user code. The middle levels can be used for other types of code. For example, OS/2 uses level 2 for device drivers. Figure 5 shows how the different privilege levels can be used to form "rings" of protection.

FIG. 5-DIFFERENT PRIVILEGE LEVELS can be used to form "rings" of protection.

When pasing is enabled, there is a separate mechanism for protecting user and operating-system memory. That mechanism is governed by the U/S (User/Supervisor) and RWW (Read/Nrite) bits, which are found in each page directory and pase table entry. Those bits control access to individual pages; the operating system manipulates those bits to allow a user program read and write, read only, or no access at all to a given page. That type of control is especially useful for systems that do not use segmentation.
I/O has its own privilege-control mechanism. The flags register contains a field called I/O Privilege Level (IOPL), which defines the minimum privilege level at which the currently running task can execute I/O instructions. Because the IOPL is updated during task switches, different tasks can have different IOPLs.

In addition, each task has an I/O Permission Bitmap for controlling access to each port address. That RAM-based table consists of a variable number of bytes, each bit of which corresponds to one of the 64 K I/O ports available on the 80386.

Virtual $\mathbf{8 0 8 6}$ environment

The 386 microprocessor can execute 8086 applications in two modes: real mode and virtual 86 mode. In real mode, the 80386 functions just like an 8086 : the data bus is accessed sixteen bits at a time, as are the microprocessor's registers; memory is limited to one megabyte; and the 80386 pasing and protection mechanisms are unavailable.
Virtual mode combines the best of real and protected modes; a simulated real-mode environment that enjoys the full benefits of pasing and protection. When the processor is executing in virtual mode, the segment regis-

WHAT IS AN OPERATING SYSTEM?

When it comes to operating systems, what you see is not the operating system. The user interface and the functions it performs-formatting disks, for example-is not the operating system. The user interface is really just another program that runs on the operating system. Many companies that sell operating systems include a user interface. Other companies sell just the operating system and include an interface specification so that programmers can write their own user interfaces. The user interface in MS-DOS is contained in COMMAND.COM.
An operating system is not a language or a compiler. Although an operating system must be written in some language, the language is not the operating system. Nor is the compiler, although one is often included with an operating system.

Utilities (FORMAT.COM and DEBUG.COM, for example) and commands (DIR and COPY, for example) are also not the operating system.
Then what is an operating system? An operating system is a program that provides orderly access to computer hardware by applications programs: word processors, spreadsheets, databases, etc. Without an operating system, every application would have to define its own disk-file structure and write its own code to access that structure. Different applications would undoubtedly have different file structures, so they would be unable to coexist on the same disks. Chaos would result if users had to use a different disk for every application.

Likewise, the operating system provides orderly access to the other resources: keyboard, video display, serial and parallel ports, etc.

Operating systems vary greatly in the services they provide. A single-tasking operating system (MS-DOS, for example) provides capabilities for loading and executing programs, reading and writing disk files, etc. A multitasking operating system is more complex because it must allow multiple tasks to share a machine simultaneously, prevent them from corrupting one another, and prevent them from trying to access the hardware simultaneously.

An operating system is the most complex program a programmer can write. Because of that complexity, typical operating systems are designed in layers. The services needed to implement a given layer are found in the layer below. The lowest level of an operating system is the one that interacts with the hardware directly.
Multitasking operating systems were developed in the 1960's to allow multiple users to share a central computer. This is called time sharing. In time sharing, relatively inexpensive terminals connect each user to an expensive central computer. From his terminal, each user seems to have the central computer all to himself, but as the number of users increases, performance decreases.
Many of the advantages of time-shared central computers are disappearing. Personal computers and workstations offer much less expensive processing power than mainframes. And advances in networking allow users to share information with inexpensive network file servers.

Although the popularity of time-shared computers is decreasing, the number of multitasking computer systems is increasing. Multitasking is showing up in both real-time control systems and in personal workstations.
ters are used as in real mode. The contents of the segment register are shifted left four bits and added to the offset to form a linear segment address.

However, by using pasing in virtual mode, 8086 ap-
plications can be executed anywhere in physical memory, not just the lower one megabyte. As discussed above, the pasing hardware allows the 20 -bit linear address produced by a virtual-mode program to be divided into 2564 K pases. Each pase can be located anywhere in physical memory.
All virtual-mode programs execute at privilege level 3 , the lowest level. If a virtual-mode task attempts to execute a privileged instruction, a microprocessor exception will occur IN and OUT instructions are not sensitive to I/O privilege level when executed in virtual 8086 mode. Instead, I/O port access is controlled using the I/O permission bit map.
A virtual-machine monitor program such as Windows 386 can provide a virtual-8086 environment that is totally transparent to normal applications programs. The main requirement is that operating-system calls and I/O instructions are intercepted and emulated by the virtual-machine monitor.
One of the biggest advantages of virtual mode is the ability to run several MS-DOS programs simultaneously.

OS/2 cannot multitask DOS applications because OS/2 was designed specifically for the 80286, which does not provide a virtual 86 mode. On the other hand, Windows/386, OmniView, VM338, and other programs use virtual mode to run several DOS programs simultaneously.
Other products use virtual mode to run DOS applications under UNIX. DOS uses interrupt 21h to provide operating-system functions: opening and closing disk files, etc. When a program issues an interrupt 21h, the operating system examines the VM bit in the image of the EFLAGS register that is stored on the stack. If that bit is set, the task was a virtual 8086 task. It is then up to the operating system either to emulate the call using its own resource, or to send the call on to an actual copy of DOS.

Next month

In the final part of this series, we'll look at hardware design issues, including memory interfacing, $/ / O$ interfacing, and interfacing with other system components, including the 80387 math co-processor and the 82386 cache controller: CD $^{(1)}$

PC Service

THE FOIL PATTERNS for the AM (top) and FM (bottom) carrier-current receivers.

THE $10-\mathrm{MHz}$ FREQUENCY STANDARD can be assembled on this PC board.

PC Service

ACTIVE ANTENNA foil pattern.

HDTV
continued from page 43

those of us who travel to Europe and watch TV there. It is planned that future displays would be refreshed from the frame storage memory at a $75-$ or $100-\mathrm{Hz}$ rate.

The HDTV system that seems to be favored for North America has a more complex relationship to NTSC. The line ratio would be 15:7. A downconversion from HDTV to broadcast NTSC would require either a digital interpolation of $15: 7$ or the cropping of 69 lines at top or bottom or both to give 966 active TV lines, so that a simple 2:1 digital interpolation could yield 483 active lines per the NTSC standard (the remaining lines of the so-called 525 line NTSC system are not visible on screen, but are in the vertical blanking interval). Many of the HDTV systems that are currently under consideration are known as MAC systems, which is an acronym that stands for Time Multiplexed Ana\log Components. MAC systems, it should be noted, are inherently free of the color artifacts that have always plagued both NTSC and PAL broadcast pictures.

In Europe, the consensus seems to be that the HDTV production standard used in studios will be fully compatible with a version of MAC called D-2 MAC which is intended to be used shortly as the Direct Broadcast Satellite (DBS) transmission signal of the European Broadcast Union (EBU). The emphasis there is on compatibility with D-2 MAC, and not necessarily with PAL or SECAM. Some see the eventual use of D-2 MAC for terrestrial transmission with the eventual replacement of the existing PAL and SECAM.

B-MAC, a system developed by Scientific Atlanta, while not a true HDTV system in that it transmits an interlaced 525 -line picture and is therefore limited in vertical resolution, might more properly be called an Enhanced Definition System. NHK, the Japanese governmentsponsored broadcast authority, has taken a totally different approach to the transmission of HDTV pictures. Since their 1125-line picture is not designed to be compatible with any existing broadcast standards, they have developed a special form of MAC for HDTV transmission. It's
called MUSE, which is an acronym for MUltiple Sub-Nyquist Encoding." MUSE sub-samples the $1125-$ line picture, transmitting every other pixel of every other line in a first field. The missing samples of the line are transmitted next, followed by alternate samples of the missing lines and, finally, the samples previously omitted. MUSE has two resolution specifications. One resolution is for static pictures where the full information content of the 1125 -line system is delivered via one $8.1-\mathrm{MHz}$ baseband video signal. The other is the resolution that is provided when the picture contains motion; that is the resolution of current NTSC pictures. All forms of MAC, including MUSE, employ various amounts of pre-emphasis for the video signals, as shown in Fig. 9. In MAC systems, the $0-\mathrm{dB}$ crossover frequency for the emphasis curve is much higher than for NTSC, and the low-frequency gain reduction is only about 3 dB for the B-MAC and D-2 MAC systems. MUSE employs a very elegant form of pre-emphasis that provides substantial improvement in signal-to-noise ratios. The MUSE pre-emphasis characteristic applies a large high-frequency gain boost for small-amplitude high-frequency components, and much less emphasis for large high-frequency components. That is possible only with a signal format that has no color subcarrier mixed in with it.

There are other variations on the MAC HDTV idea, but by now it should be clear that the path towards a standard is going to be a long and tortuous one. There seems to be an increasing tendency, in this country at least, to favor some sort of NTSC compatible approach to enhanced definition TV, so that millions of TV's don't become obsolete. It is entirely possible that the first delivery of HDTV may not be via broadcasting or cable TV at all. It could well be that we will see first examples of HDTV delivered to us in the form of software (new laser optical-disc formats or even new VCR formats based upon Super VHS or ED-Beta technology). Of course, such software will require new video monitor/receivers and other new hardware. Still, you should hold on to those NTSC receivers for the moment, since the current multiplicity of HDTV systems could well delay over-the-air HDTV for many years to come.

R-E

AUDIO UPDATE

continued from page 90
plifier. If an amplifier survives 24 hours of such rough treatment, then the statistical probability is that it is not likely to break down in a customer's home in the foreseeable future. (See Onkyo's product-life test facilities in Fig. 1.)

Physical examinations

How much will a physical examination reveal about an electronic component's reliability? Unfortunately, not much. In the past, some very expensive audiophile components sporting $1 / 2$-inch thick front panels, beautifully laid out wiring on military glass-epoxy circuit boards, computer-grade parts, etc., have had a far higher breakdown rate than some other unpretentious and far less expensive mass-produced products. That is not to say that pushing the state of the art results in unreliable products, but rather that some designers in their pursuit of the will-of-the-wisp of ultimate fidelity seem to neglect (or have never understood) some essential ground rules of amplifier design. For example, at one point many of the high-end limited-production amplifiers seemed to suffer from instability and to be unable to withstand standard slew-factor testing without blowing fuses.

I don't mean to imply that cheaper is better. An overzealous pursuit of lower manufacturing costs will almost always have negative consequences. Reducing the size and thickness of the front panel won't affect longevity, but cutting back on the heat sinks might. It appears, however, that when the economies of large production runs are possible, the manufacturer gains very little in the way of cost by scrimping on parts quali-ty-particularly considering the ill will engendered by premature failures.
As someone who grew up with audio during the unlamented mono tube days, I continue to be impressed with the extended lon-gevity-and sound-of today's audio equipment. Of course, failures still occur, but they are rarer than ever before.

R-E

MARKET CENTER

FOR SALE

TUBES. new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.
PHOTOFACT folders, under \#1400 $\$ 4.00$. Others $\$ 6.00$. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554.
TUBES: "Oldest," "latest." Parts and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., R.E. Hammond, IN 46324.

GREAT buys! Surplus prices, ICs, linears, transformers, PS, stepping motors, vacuum pump, phototransistor, meters, Isase, FERTIK'S, 5400 Ella, Phila., PA 19120.
TWO-WAY-RADIO, PC COMPUTERS, UNIDEN SERVICE. General Radiotelephone licensed technician. Catalog-RAYS, 2025 Moline, Ft. Worth, TX 76117 (817) 831-7717.

Quality Microwave TV Antennas
Multi-Channel 1.9 to 2.7 GHz . 40 dB Gain 30-Channel System complete $\$ 149.95$ 12-Channel System complete $\$ 104.95$ 2-Channel System complete $\$ 79.95$ Pillilms Fioci lecactrones
P.0. Box 8583 - scottudta, $n 285252$ (602) $947-7700$ (3300 Credit all phone orders! MasterCard • Visa • COOIs Quantity Pricing

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712.

DESCRAMBLERS. All brands. Special combo Jerrold 400 and SB3 $\$ 165$. Complete cable descrambler kit \$39. Complete satellite descrambler kit $\$ 45.00$. Free catalog. MJM INDUSTRY, Box 531 , Bronx, NY 10461-0531.
TRS-80 color computer software. Low prices! Huge selection! Free catalog. T\&D, P.O. Box 1256, Holland, MI 49422
SOLAR electric systems. Discount prices. SUN POWER-TEXAS, Dept. 01C, P.O.B. 2788A, Freeport, TX 77541. 1 (409) 233-8350.
BANDSTOP Filters-Remove interfering signals on Cable T.V. Channels $2,3,4,14,15,16,17,18,19,20$, 21 or 22. \$20 each - Money Back Guarantee, dB ELECTRONICS, P.O.Box 8644, Pembroke Pines, FL 33084.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Over 12 years of satisfied customers! Catalog \$2.

CBC INTERNATIONAL

P.O. BOX 31500RE, PHOENIX, AZ 85046

[^2]TUBES, name brands, new, 80% off list. KIRBY 298 West Carmel Drive, Carmel, IN 46032.

IS it true...Jeeps for \$44 through the government? Call for facts! 1 (312) 742-1142, ext. 4673.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 25.00$.
() Plans/Kits () Business Opportunities () For Sale (Education/Instruction () Wanted () Satellite Television ,

Special Category: $\$ 25.00$

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15 (\$46.50)
16 (\$49.60)	17 (\$52.70)	18 (\$55.80)	19 (\$58.90)	20 (\$62.00)
21 (\$65.10)	22 (\$68.20)	23 (\$71.30)	24 (\$74.40)	25 (\$77.50)
26 (\$80.60)	27 (\$83.70)	28 (\$86.80)	29 (\$89.90)	30 (\$93.00)
31 (\$96.10)	32 (\$99.20)	33 (\$102.30)	34 (\$105.40)	35 (\$108.50)

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.):

Card Number
Expiration Date
$\overline{\text { Please Print Name }} / \overline{\text { Signature }}$

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 3.10$ per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for issues; 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for
individuals who want to buy or sell a personal item) $\$ 2.50$ per word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) $55 ¢$ per word additional. Entire ad in boldface, $\$ 3.70$ per word. TINT SCREEN BEHIND ENTIRE AD: $\$ 3.85$ per Word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $\$ 4.50$ per word. EXPANDED TYPE AD: $\$ 4.70$ per word prepaid. Entire ad in boldface, $\$ 5.60$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: $\$ 5.90$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 6.80$ per word. DISPLAY ADS: $1^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 385.00 ; 2^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 770.00 ; 3^{\prime \prime} \times$ $21 / 4^{\prime \prime}-\$ 1155.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS
AND PHONE NUMBER. Copy to be in our hands on the 12th of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 12th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

CABLE TV DESCRAMBLERS, Jerrold, Scientific Atlanta, Zenith, most major brands. Dealer Inquiries Welcome. Visa-M/C Accepted. E \& O VIDEO, 9691 E. 265th Street, Elko, MN 55020.1 (800) 638-6898.

CABLE TV CONVERTERS/DESCRAMBLERS Free Catalog. VIDEO MART 3938 E. Grant \#241-C, Tucson, AZ 85712. (602) 721-6557.
CABLE TV CONVERTERS-FREE CATALOG Zenith, Tocom, Scientific Atlanta, Jerrold, Pioneer, Oak, Panasonic - Remotes, Video Accessories. Best Buys/Service, Monthly Specials. ARIZONA Best Buys/Service, Monpbell, \#310-A, Tucson, AZ
VIDEO, 3661 N. Camp 85719. (602) 323-3330.

Free power supply, connectors ($\$ 8.95$ value) with TV Project Assortment \#103 (February 1984 G. Sync article) contains PCB, TOKO coils, transistors (BFO85), IC's, diodes, article reprint. $\$ 25.00$. Five/ $\$ 112.50$. Assortment \#104, contains $\$ 25.00$. Five/ $\$ 112.50$. Assortment \#104, Contains
all other parts $\$ 10.00$. Shipping $\$ 3.00$. MCNISA, all other parts $\$ 10.00$. Shipping $\$ 3.00$. MCNISA,
COD accepted. Jim Rhodes, Inc. P.O. Box 3421 , Bristol. TN 37625.
Fair Pricing 1 (313) 979-8356. Lots 5 and 10; 65 SB 55; 65 MLD 1200 55; 85 TriBi 75; 90 SA 80; 105 SSAVI 95; 295 Pioneer 275; 180 Z-Tac 170; 180 Tocom 170; 18 Filters Any Channel-15; No Michigan Sales.

FREE GATALOG

FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er. SINCE 1962 FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS

PHOENIX, ARIZONA 85034

RENTAL MOVIE STABILIZER. Connect between VCRs or to monitor. Satisfaction Guaranteed $\$ 59.95, \$ 4$ handling. 1 (800) 338-8751.
The DECODER. Satellite and Cable Descrambling Newletter. News-Schematics-Modifications-Reviews. $\$ 24.00 /$ year. Complementary sample. TELECODE, Box 6426, Yuma, AZ. 85366-6426.
SCRAMBLING NEWS Articles, patents, circuits, turn-ons, etc. $\$ 24.95 /$ year. Sample $\$ 3$. Scrambling News; The first year. 200 pages. $\$ 22.95$ Special. News; The first year. 200 pages. \$22.95 Special.
Both $\$ 45$. New..Z-Bag II. SCRAMBLING NEWS, 1552 Hertel Ave. Buffalo, NY. 14216. COD's (716) 874-2088.
LTHIUM Batt. (Special of the Month) 3.6 V Extra heavy duty, with long leads. Don't let your Computer boards die. $\$ 8.00$ ea. or 3 for $\$ 20.00$ or $\$ 5.50$ ea. per case of 25 . HI-TECH ELECTRONICS, P.O. Box 42423 , Detroit, MI. 48242.
CABLE DESCRAMBLER LIQUIDATION Major makes and models available. Industry pricing! (EXample: Hamlin Combo's, \$44 each...minimum 10 orders). DEALERS ONLY! Call WEST COAST ELECTRONICS (818) 709-1758.
CABLE TV EQUIPMENT, Scientific Atlanta, Jerrold, Oak, Hamlin, Zenith SSAVI. WE WILL NOT BE UNDERSOLD. Call Toll Free 1 (800) 327-3407, or send $\$ 3.00$ for catalog to K. D. VIDEO INC., P.O. Box 29538, MLPS, MN. 55429 .

IC's digital and linear, transistors, sockets, led's for sale. Very low prices. No minimum order. For free parts list write to: ARLI ELECTRONICS, 1052 Eilinita Ave., Glendale, CA. 91208.
ARCADE VIDEO GAME logic boards. Thousands in stock. Call for price list. EPROMS- best prices anywhere. ELDORADO 14816 Main, Gardena, CA 90248. (213) 516-9525.

REDUCED 75\% Diehl Mark V-Scanner \$249. Diehl Mark III \$99. New WEEC 2805 University Ave., Madison, WI. 53705. (608) 233-9741, (608) 238-4629.

Pacific Cable Company, Inc.

7325½ RESEDA BLVD., DEPT. \# R-2• RESEDA, CA 91335 (818) 716-5914 • No Collect Calls • (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION

Please have the make and model \# of the equipment used in your area. Thank You

SENIOR PROM- For all your Eprom needs! Duplication, Programming, Supplies. Great Prices! Write for details. SENIOR PROM, 11 Manor Ridge Drive, Princeton Junction, NJ. 08550
DESCRAMBLERS All remote at wholesale prices, Z-Tac \$199.95, Jerrold 400, \$139.95, Tocom \$205.95, Oak RTC $56 \$ 199.95$, Add ons, SB3-2 \$69.95, SA3-2 \$89.95, Hamlin \$59.95, TRI-BI $\$ 89.95$. Alltypes Converters, Call, C:O.D.OK, G.D. ELECTRONICS, (602) 829-9441.
TOCOMS and more TOCOMS. Outstanding Zennith units. Quality cable products at discount prices. (714)-974-5688.

CABLE TV CONVERTERS and DESCRAMBLERS. We sell only the best. Low prices, SB-3 $\$ 79.00$. We ship COD. free catalog. ACE PRODUCTS. PO Box 582 Dept E. Saco, ME 04072. (207) 967-0726.

ENGINEERING software. IBM/compatibles. CompDes Circuit Design. Basic electricity through circuit designs. CompMath-General mathematics through statistics. CompView-Digital Analysis, waveforms and filters. \$49. (614) 491-0832. BSOFT SOFTWARE, 444 Colton Road, Columbus, OH 43207.

LOW Prices - ICs, Transistors, Capacitors, Switches. Special 27128- $\$ 3.00,2716-\$ 1.25$. Flyer-SASE SANTECH 11 Revere Place, Tappan, NY. 10983. (914) 359-1130.

Crystal Oscillator Board and Instructions. 27 MHZ Range. Send $\$ 3.00$ PD \& F, P.O.Box 10281, Killeen, TX. 76542.
SURVEILLANCE Electronics, Debugging, Kits. Latest High-Tech. Catalog $\$ 5.00$ TECHNOLOGY SERVICES, 829 Ginette Street, Gretna, LA. 70056.
RADIO Amateur (HAM) Education. Learn at home or in your car. VHS Video or Audio Cassettes. Easy to obtain License. Free information. AMATEUR RADIO SCHOOL 2350 Rosalia Drive, Fullerton, CA. 92635.

AIRBAND Converter. Uses your CB \$29.00 Complete. SASE for info MICRO TEK PRODUCTS, Box 563 , Romeo, MI. 48065. (313) 752-3978.
DESCRAMBLERS, Zenith Z-Tac that really work, remote controlled, Tocom all in one combo, remote controlled, $\$ 199.95$. Full Warranty. S.A.C. (702)-647-3799.

DESCRAMBLERS, Jerrold 400-450, SB3-2, TRI BI, Oak TC 35 - RTC 56 , Hamlin MLD1200, SA3-2, Remote converters, Tocom, Zenith. All at wholesale prices and carry a Full Warranty, C.O.D. OK S.A.C. (702) 647-3799.

Cable TV Descramblers liquidation. Zenith Z-Tac w remote \$165; Tocom VIP w/remote \$235; Oak M35B $\$ 60$; Jerrold 450 Dic $\$ 150$; other units available unmodified units at wholesale prices: DEALERS Wanted. Call (702) 887-3894
Software, Schematic Fonts, Electronics Programs Electronics Dictionary. For C64 or C128 with GEOS (tm). Send $\$ 19.95$ or write for Info. THOMAS SOFTWARE, 1375 Beasley Rd., Jackson, MS. 39206
ALUMINUM image transfer process, your artwork to aluminum. Write: J \& E ENTERPRISES, 2457 N. Marmora, Chicago, IL. 60639.

PLANS AND KITS

BUILD this five-digit panel meter and square-wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430
CATALOG: Hobby/broadcasting/HAM/CB: Cable TV, transmitters, amplifiers, bugging devices, computers, more! PANAXIS, Box 130-F2 Paradise, CA 95967

TOP quality imported, domestic kits, surplus, discount electronics, computers components. Free catalog. TEKTRASONIX, 1120 Avenue of the Americas, $1 / f 1$ Suite 4038, New York, NY 10036

MICRO-LINK FM STEREO AUDIO TRANSMITTER. One chip does it all! Transmit your CD/VCR/ Walkman in stereo to any FM radio. Free schematic and info. Send a self addressed/stamped envelope to: DJ INC., 217 E. 85th St., Suite 108, New York, NY 10028

CALL FOR FREE CATALOG

TEXT TO SPEECH BOARD!

PC/XT COMPATIBLE. MAKE YOUR COMPUTER TALK!

A VERY POWERFUL AND AMAZING SPEECH CARD. USES THE NEW GENERAL
INSTRUMENTS SPO256-AL2 SPEECH CHIP AND THECTS256A-AL2TEXTTO SPEECH INSTRUMEN
CONVERTER
THIS BOARD USES ONE SLOT ON THE MOTHERBOARD AND REQUIRES A COM SERIAL PORT. BOARD MAY ALSO BE USED INA
STAND ALONE ENVIRONMENT WITH ALMOST STAND ALONE ENVIRONMENT WITH ALMOST
ANY COMPUTER THAT HAS A RS232 SERIAL ANY COMPUTER THAT HAS A RS232 SERIAL
PORT. FEATURES ON BOARD AUDIO AMP OR MAY BE USED WITH EXTERNAL AMPS.
DEMONSTRATION SOFTWARE AND A LIBRARY DEMONSTRATION SOFTWARE AND A LIBRARY
BUILDING PROGRAM ARE INCLUDED ON A $51 / 6$ INCH PC/XT DISKETTE. FULL DOCUMENTA-

> NEWI PCECUT
> NEW!
> CUT!
> \$6995

NEW! IC TESTER! \$149.00

SIMILAR TO BELOW EPROM PROGRAMMER. PLUGS IN TO YOUR PC OR XT. TESTS ALMOST ALL 14, 16, AND 20 PIN $74 \times X$ SERIES. INCLUDES STANDARD POWWER, "SN" AND "LS" DEVICES. ALSO TESTS CD4000 SERIES CMOS. SOFTWAREINCLUDED CANEVEN DETERMINE PART NUMBERS OF MOSTUNMARKED AND HOUSE NUMBERED DEVICES
WITH SIMPLE MOD. THIS UNIT CAN ALSO TEST 6.4K AND 256K DRAMSIWITH MANUAL WITH SIMPLE MOD. THIS UNIT CAN ALSO TEST 6.4
AND SOFTWARE: $\$ 149$. PERFECT FOR SCHOOLS.

PC/XT EPROM
 PROGRAMMER \$169

ASK ABOUT
OUR NEW
PAL
PROGRAMMER!

* LATEST DESIGN * PROGRAMS UP TO 4 DEVICES AT ONE TIME \& FEATURES EASY TO USE MENU DRIVEN SOFTWARE THAT RUNS UNDER PC OR MS-DOS, \star USES AN INTELLIGENT PROGRAMMING ALGORITHM FOR SUPER FAST (8X) EPROM BURNING. \star THIS PLUG-IN BOARD ATTACHES TO AN EXTERNAL MINI CHASSIS CONTAINING AUTOMATIC VPP SELECTION: $12.5 \mathrm{~V}, 21 \mathrm{~V}$, ORE 25 V . \star EPROM DATA CAN ALSO BE LOADED FROM OR SAVED TO A DISKETTE, \star PROGRAMMING SOFTWARE SUPPORTS: 2716, 2732, 2732A, 2764, 2764A, 27128, 27128A, 27256, 27256A, 27512, AND 27512A. ネ ASSEMBLED AND TESTED, BURNED. IN WITH MANUAL. \$169 WITH SOFTWARE.
JUST RECEIVED. SAME AS ABOVE PROGRAMMER, BUT PROGRAMS 8 UNITS AT ONE TIME - $\$ 299$.

Digital Research Computers
P.O. BOX 381450 • DUNCANVILLE, TX 75138 • (214) 225-2309

TERMS: Add $\$ 3.00$ postage. We pay balance. Orders under $\$ 15$ add $75 ¢$ handling. No (except Canada) add 20% P \& H. Orders over $\$ 50$ add 85 for insurance.

CIRCLE 191 ON FREE INFORMATION CARD

REMOTE CONTROL KEYCHAIN

Complete w/mini-transmitter
and +5 vdc RF receiver
Fully assembled including plans to build your own auto alarm $\$ 19.95$ Check, Visa or M/C $\$ 19.9530$ days refund
VISITECT INC. $\quad(415) 872-0128$
PO BOX 5442, SO, SAN FRAN,,CA 94080

DESCRAMBLING, new secret manual. Build your own descramblers for cable and subscription TV. Instructions, schematics, for SSAVI, gated sync, sinewave, Jerrold, Hamlin, Oak, Zenith, (HBO, Cinemax, Showtime, UHF, Adult) $\$ 8.95$, $\$ 2$ postage. CABLETRONICS, Box 30502R, Bethesda, MD 20814.

FM transmitter 88 to 108 MHZ kit $\$ 12.95$ SIERRA ELECTRONICS. Box 709, Elfers, FL 34680-0709 ELECTRONIC Kits! Transmitters! Recorders! Phone Devices! Surveillance items! More! Catalog \$1.00: XANDI ELECTRONICS, Box 25647, 60K, Tempe, AZ 85285-5647
PROJECTION TV Convert your TV to project 7 foot picture...Easy... Results comparable to $\$ 2,500$ projectors.. Plans and $8^{\prime \prime}$ Lens \$24.95... Professional Systems available...Illustrated Catalog FREE MACROMA 15GF Main Street, Washington Crossing, PA 18977. Creditcard orders 24 Hrs. (215) 736-3979.
PCB Design, Artwork layouts. S/D Sided Boards, Iow prices. No minimum charge. VENUS VENDING, Box-113, Kew Gardens, NY 11415. (718) 739-7809.

110 VAC power from any car...change 12VDC to 125 VAC 60 Hz 100 watts, completely assembled or kit. For schematic parts list send $\$ 5.00$ SASE to JAMES TYLER 107-51 139 Street, Jamaica, NY 11435.

SUPER Strobe Circuit. Convert Neon, Fluorescent tubes into bright strobe lights. Excellent for DJ's light shows. Plans $\$ 10.00$. COSMOS 205 White Plains Rd., Trumbull, CT 06611.
"CB Trick of the Trade book" learn CB repair tricks and tuning tricks. Send $\$ 19.95$ to MEDICINE MAN, CB P.O. Box 37, Clarksville, AR 72830.

RADIO ASTRONOMY! Monthly magazine, books, components. $\$ 3.00$ brings sample package. BOB'S ELECTRONIC SERVICE, 7605 Deland, Ft. Pierce, FL 34951.
ROBOTICS! Engines! Inventions! Shape Memory Metals contract like muscles when electrically stimulated. Send SASE for catalog. MONDO-TRO NICS, 1014 Morse Ave., Suite 11-R, Sunnyvale, CA 94089.

PRO2004 Turbo Scan, 30CPS. 400 Channels. Kit $\$ 35.00$. LESTER JERNIGAN, Box 2406, Orange Park, FL 32067-2406.
Free Microprocessors, Free Electronic Magazines, Free Education in Computers. For info write MICRO-SAT CORPORATION. 2401 N.E. Cornell, Hillsboro, OR 97124.
\$50 PACKET for Commodore 64. For info send SASE to: A \& A ENGINEERING, 2521 W. LaPalma, \#K, Anaheim, CA 92801

SATELLITE TV

CABLE TV Secrets- the outlaw publication the cable companies tried to ban. HBO, Movie Channel Showtime, descramblers, converters, etc. Supplier's list included \$8.95. CABLE FACTS, Box 711 . R, Pataskala, OH 43062

SATELLITE TV receiver kits! Instruction manual, boards, semiconductor parts! 59° LNA's! LNB's! KuBand LNB's! Catalog \$1.00 XANDI ELECTRONICS, Box 25647, Dept. 21PP, Tempe, AZ 85285-5647.

CaTALOGORIIFORMMTION: $2133888-8988$ TOLL FREEE 1-800-423-3483 OR 1-800-521-MARK |IICAL FOROODERS
 OROE BY FAX (213) 888 -8888
VIDEO/AUDIO SURRO
SOUND PROCESSOR SM-333 $\triangle \triangle$

 SUPER SALE $\$ 62 / 833$

SUPER SALE

16OUR GROUPS OF INOEPENDENT OUTPUT SYSTEMIOOOWICH MAX
4S6OW HOO $117 V$ 2 PROF ESSIONAL COLOR CONTROL SYSEM KEY BOARD TYPE 3 INOEPENDENT INPUT SIGNAL AONULMENT 4 FOOUR
GROUPS OF INEPENOENT DIMMIR CONTROL 5 SPEED CONTHOL GROUPS OF INDEPENOENT DIMMEA CONTROL 5 SPEED CONTRO
CHASER 6 AUTOMATII CHASING CONTROL 5 YSTM T FOH KINOS
OF SECIAL CHASING PROGRAM B COMBINATION OF PROGRAM AN OF STEIAL CHASING PROGRAM \& COMBINATION OF PROGRAM AND
MUSIC CHASING EFFECT 9 FORWARDI BACKWARD CHASING CONTAOL
SU 3 I SU 328 color light controiller in netailized for ballroom, nigit club diso and

 independent ispal adiutment. The scond kind ia composed of electical circuits
and tha in the main part tor creating a wpes al lighting efthert it has fout chaing promamme
Dimations
All mil

ONLY
ONLY

MARK V ELECTRONICS, INC. 8019. E. SLAUSON AVE
 montebeloo ca 90640

SHOWROOM HOURS: (PACIFIC TIME) MON.-FRI. 9:30 to 5:00 SAT, 10:00-5:00

 Thponse and transient reiponse is wperiar to the other powt uzvistor

FREE CATALOG

 MULTIFUNCTIONAL LED D.P.M. $\triangle \Delta$

Your Ticket To SUCCESS
Over 25,000 technicians have gained admit tance worldwide as certified professionals. Let your ticket start opening doors for you
ISCET offers Journeyman certification in Consumer Electronics, Industrial, Medical, Communications, MATV, Radar, Computer and Video. For more information, contact the International Society of Certified Electronics Technicians, 2708 West Berry St. Fort Worth, TX 76109 * (817) 921-9101.
Name
Address
City
State \qquad Zip
Send material about ISCET and becoming certified.
Send one "Study Guide for the Associate Level CET Test:" Enclosed is $\$ 5(+\$ 1$ postage).

CONSOLIDATED

THE ULTIMATE

 ELECTRONICS CATALOG.Order your 260 page catalogue packed with over 10,000 money saving electronic parts and equipment. Send $\$ 3.00$ check or money order, or call 1-800-543-3568 today and use your Mastercard or Visa.
Consolidated Electronics, Incorporated
705 Watervliet Ave., Dayton, Ohio 45420-2599

NAME
ADDRESS

STATE
CIRCLE 188 ON FREE INFORMATION CARD

VIDEOCIPHER II Manuals. Volume 1 - hardware, Volume 2 - software. Either $\$ 32.45$. Both $\$ 54.95$. NEW! Volume 3-Projects/software - $\$ 42.45$. All for $\$ 89.95$. CODs - 1 (602) 782-2316. Catalog - $\$ 3.00$ TELECODE Box 6426-R, Yuma, AZ 85366-6426.

DESCRAMBLERS for movies, networks, \$175. video only. $\$ 450$ complete. Visa, MC accepted. Catalog \$4 SKYWATCH, 238 Davenport Road, Toronto, Ontario, Canada, M5R-1J6.

VIDEOCYPHER II descrambling manual, schematics, video and audio DES, cloning, muskateering, EPROM codes. (HBO, Cinemax, Showtime, adult channels.) $\$ 13.95, \$ 2$ postage CABLETRONICS, Box 30502R, Bethesda, MD 20814.

Pay IV and Satellite Descrambling Vol. 2 -Scrambling News
Vol. 2 is even better than vol. $1 . \$ 12.95$ Vol. 1 \$14.95 Experiments with Videocipher. Cloning, musketeering s14.95. Cable TV Security, design S12.95. MOS/MMDS Handbook. Microwave hacking S9.95. Build Satellite Systems Under $\$ 600$. $\$ 12.95$. Any $3 / \$ 27$ or $6 / \$ 40$. Scrambling News. Monttly \$24.95yr: New Z-TAC and VC series. Sample $\$ 3$ (retundable). New enlarged Fall product catalog $\$ 1$. Scrambling News, 15552A Hertel Ave. Buftalo. NY 14216 COD's 716-874-2088

FREE catalog systems, Upgrades, Houston, Uniden, Chaparral, etc. Save, \$\$\$\$ SKYVISION, 2009 Collegeway, Fergus Falls, MN 56537, (218) 739-5231.
SEND Stamp For Catalog. COMMUNICATIONS ENGINEERING, 76 Boulevard, Hudson Falls, NY 12839.

FREE catalog 36 pages. Major brands. Nobody undersells WEST, since 1977. Immediate shipping. Call for prices. 1741 Cedardale Road, Mt. Vernon WA 98273. (800) 222-9064.

oppoituvity withour risk.

The biggest improvement in 40 years has made U.S. Savings Bonds an ideal investment. A variable interest rate lets you share in rates offered by today's securities market. No limit on how much you might earn.

What makes this improved Bond ideal is that you're protected by a guaranteed minimum. And if the Bond is held to maturity, you'll double your money.

Take another look at this opportunity without risk.

A public service of this publication and The Advertising Council.

WANTED

INVENTORS! AIM WANTS-Ideas, Inventions, technology, improvements on existing products. We present ideas to manufacturers. Confidentiality guaranteed. Call toll-free in U.S. and Canada 1 (800) 225-5900.

WANTED: Old, Western Electric, McIntosh, Marantz, Dynaco, Altec, JBL, Jensen, RCA; TUBES Speakers, amps (713) 728-4343. MAURY, 12325 Ashcroft, Houston, TX 77035.
WANTED: WRITERS Heath Company, the world's largest manufacturer of electronic kits and publisher of a new technical magazine, is looking for alert Electronic Hobbyists to add to our staff as contributing part-time or regular authors. SASE for information: HEATH COMPANY P.O.Box 217, Benton Harbor, MI 49022-0217.

TUBES - 2000 TYPES DISCOUNT PRICES!
Early, hard-to-find, and modern tubes. Also transformers, capacitors and parts for tube equipment. Send $\$ 2.00$ for 24 page wholesale catalog.
ANTIQUE ELECTRONIC SUPPLY
688 W. First St. • Tempe, AZ 85281•602/894-9503

CABLE HOT LINE

PRICE \& Product Best of 2 Worlds 1 (313) 548-0050. SSAVI/RKDM400/SB-3/DRX-3DIC-105/PD-3/ M35B/DF-3... BONDED CABLE P.O. Box 340 Ferndale MI 48220-9998.

DIGITAL CAR DASHBOARDS

BUILD yourself a complete electronic dashboard. Free details, \$1 P \& H. MODERN LABS, 2900 Ruisseau, St.-Elizabeth, QC, JOK 2JO, Canada.

SCRAMBLE FACTS 718-343-0130

PHONE TODAY for 3 minutes of satellite TV industry news, technical tips, and new product information.

PRINTED CIRCUIT BOARDS \& ARTWORK LAYOUTS

LOW priced single, double sided boards. Low setup fees. CAD artwork at discounted prices. (704) 464-1164; WE-KAN. RT-3, Box 662-H, Conover, NC 28613.

MODEMS

SMARTONE Internal Hayes compatible 1200bps Autoanswer/Autodial. FREE Bitcom Software $\$ 15.00$ FREE Compuserve. 2 year warranty. NO SHIPPING CHARGES. $\$ 65.95$. GTECH TECHNOLOGIES, 11221 Interstate-10, New Orleans, LA 70128.

BIG PROFITS!

earn VCR cleaning-Repair! Prior experience unnecessary. Need only small hand tools, average mechanical ability. Big demand performing VCR cleanings and repairs! Viejo's 400 page TRAINING MANUAL (over 500 photos and illustrations!) and companion VIDEO TRAINING TAPE contains hundreds of REAL-WORLD examples of VCR malfunctions and their repair solutions. Secrets revealed! Also: business tips for your new service business!

Free INFO: call (toll free) 1-800-537-0589
or write to: Viejo Publications, Dept. R-E
217 E. 86th St., STE 272, NY, NY, 10028

BUSINESS OPPORTUNITIES

YOUR own radio station! AM, FM, TV, cable. Licensed/unlicensed. BROADCASTING, Box 130F2, Paradise, CA 95967
MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi-ness-without investment. Write: BUSINESS, 92.R, Brighton 11th, Brooklyn, NY 11235.

EARN thousands with your own part time electronics business. I do. Free proof, information. INDUSTRY, Box 531, Bronx, NY 10461-0531.
PROJECTION TV...Make $\$ \$ \$$'s assembling Projectors. Easy!.. Results comparable to $\$ 2,500$ projectors... Plans, 8 " Lens \& Dealers information $\$ 22 . .50 \ldots$ Professional Systems available... Illustrated catalog FREE MACROCOMA 15GFX Main Street, Washington Crossing, PA 18977... Creditcard Orders 24 HRS. (215) 736-2880.

BRIG ELECTRONIC

Start home. spare time. Investment knowledge or experience unnecessary. BIG DEMAND assembling electronic devices. Sales handled by profes-
sionals. Unusual business opportunity.

FREE: Complete illustrated literature
BARTA. RE-O Bux 248
Walnut Creek. Calif. 94597

Cable TV Converters

Why Pay A High Monthly Fee?

Jerrold Products include "New Jerrold Tri-Mode," SB-3. Hamlin, Oak VN-12, M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity discounts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call for info 1-800-648-3030. MIDWEST ELECTRONICS, INC., 5143-R W. Diversey, Chicago, IL 60639. MCNisa orders accepted. No Illinois orders accepted. Mon.-Fri. 8 A.M.-5 P.M. CST

DESCRAMBLER MODULE

LATEST technology alternative to Jerrold SB-3 or Radio-Electronics Feb. 1984 project. Featuring electronic tuning, AGC, auto-on/off, AD/DC power, mini-size, A\&T, and more. For literature-SOUTHTECH DISTRIBUTING, (813) 527-2190.

CABLE-TV AT IT'S BEST

SCIENTIFIC Atianta models 8500-8550-8580 remote included... $\$ 275.00$. SB-3's... $\$ 74.00$. TRIBI's... $\$ 95.00$. SA-3's... $\$ 99.00$. Zenith (Z-Tac) descramblers... \$169.00. N-12 (Vari-sync)... \$89.00. M-35 B (Vari-sync)... $\$ 99.00$. Hamilin MLD-1200's... $\$ 89.00$. 80-Channel converters... $\$ 95.00$. Dealer discount on (5) units. Call-N.A.S. INTERNATIONAL, (213) 631-3552.
BUY BONDS

AMAZING SCIENTIFIC \& ELECTRONIC PRODUCTS

PLANS

Build Yourself - All Parts Available in Stock
C7- BURNING CUTTING CO 2 LASER
TCCI-3 SEPARATE TESLA COIL PLANS TO 1.5 MEV
OGI- ION RAY GUN
GRA1- GRAVITY GENERATOR
EMLL-ELECTRO MAGNET COIL GUNLAUNCHER
$\$ 20.00$
$\$ 20.00$
$\$ 2500$
$\$ 20.00$
$\$ 25.00$

KITS

With All Necessary Plans
MFT3K- FM VOICE TRANSMITTER 3 MI RANGE
WWPMTK- TELEPHONE TRANSMITER 3 MI RANGE
BTC3K- 250,000 VOLT 10-14 ${ }^{\circ}$ SPARK TESLA COIL
LHC2K- SIMULAIED MULICOLOR LASER OEVICE
BLSIK- 100,000 WATT BLASTER DEFE
TMMIK- 100,000 VOLT 20' AFFECTIVE
RANGE INTMIDATOR
SP4K- TIME VARIANT SHOCK WAVE PISTOL
STA1K- ALL NEW SPACE AGE ACTIVE PLASMA SABER
MVIK- SEE IN DARK KIT
TORNADO GENERATOR PLASMA

ASSEMBLED

TCHO- 50,000 VOLT-WORLD'S SMALLEST TESLA COIL . . . $\$ 54.50$
LGU40- 1 MW HEN V VISIBLE RED LASER GUN.
TAT30-AUTO TELEPHONE RECORDING DEVICE
GVPMO-SEE IN TOTAL DARKNESS IR VIEWER GVPIO- SEE IN TOTAL DARKNESS IR VIEWER.... $\begin{array}{r}\$ 24.50 \\ \\ \hline\end{array}$ LSTIO- SNOOPER PHONE INFINITY TRANSMITTER $\$ 3169.50$ IPG70- INVISIBLE PAIN FIELD
GENERATOR MUTLI MODE
\$74.50

- CATALOG CONTAINING DESCRIPTIONS OF ABOVE PLUS HUNDREDS MORE AVAILABLE FOR SI.O0 OR USE OUR PHONE FOR "ORDERS ONLY" 603-673-4730.
PLEASE INCLUDE $\$ 3.00$ PH ON ALL KITS AND PRODUCTS PLANS ARE POSTAGE PAID. SEND CHECK, MO, VISA, MC IN US FUNDS.
INFORMATION UNLIMITED
P.O. BOX 716 DEPT.RE, AMHERST, NH 03031

Be a TV/VCR Repair Specialist

Now you tan train at home in spare time for a money-making ce necessary. No need to quit your job or school Everything is explained in easy-to-understand language with plenty of drawis explained in easy-to-understand language with plenty oblaw-
ings, diagrams and photos. We show you how to troubleshoot ings, diagrams and photos. We show you how to troubleshoot and repair video-cassette recorders and TV sets, how to handle house calls and shop repairs for almost any make of television or "hands-on" practice as you follow your lessons step by step Send for free facts about the exciting opportunities in TVNCR Send for free facts about the exciting opportunities in TV/VCR Repair and find out how you can start making money in this great career. MAIL COUPON TODAY - KOBB This SCHOOL OF TV/VCR REPAIR, Dept. DE019 smace ws, Scranton, Pennsylvania 18515
Please send me full information and color brochure on how I can
learn TV/VCR Repair at home in my spare time. I undersiand there is no obligation and no salesman will visit me.
Name
Name
Address
City/State
Phone (

HIGH TECH ELECTRONICS

SCRAMBLER PHONES! Phone Bug Detectors! Electronic Countermeasures Equipment! Executive and personal protection products! And much more!!! Catalog $\$ 3.00$ (Refundable with first order) DIVERSIFIED WHOLESALE PRODUCTS, P.O. Box $1275-$ RE, Redondo Beach, CA 90278.

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service 1 (800) 338-5656. In Massachusetts or Canada call (413) 568-3753.

EDUCATION \& INSTRUCTION

MAGIC! Four illustrated lessons plus inside information shows you how. We provide almost 50 tricks including equipment for four professional effects You get a binder to keep the materials in, and a oneyear membership in the International Performing Magicians with a plastic membership card that has your name gold-embossed. You get a one-year subscription to our quarterly newsletter "IT'S MAGIC!" Order now! \$29.95 for each course $+\$ 3.50$ postage and handling. (New York residents add applicable state and local sales tax.) THE MAGIC COURSE $500-\mathrm{B}$ BiCounty Boulevard, Farmingdale, NY 11735.
F.C.C. Commercial General Radiotelephone license. Electronics home study. Fast, inexpensive "Free" details. COMMAND, D-176, Box 2223, San Francisco, CA 94126.
BE A RECORDING ENGINEER; Train at home for high paying-exciting careers. FREE information AUDIO INSTITUTE 2174 Union St., Suite 22K, San Francisco, CA 94123.
DO it yourself guide on how to maintain \& clean your VCR. Hookup diagrams. Basic problems \& solutions. Illustrations included. Send $\$ 7.95$ AMERICAN GIFTS 1445 N. Murse, Chicago, IL 60676.

CABLE TV CONVERTERS

CABLE TV converters. Scientific Atlanta, Jerrold, Oak, Zenith, Hamlin. Many others. "New" Video Hopper "The Copy Killer." Visa, M/C \& Amex. 1 (800) 826-7623. B\&B INC., P. O. Box 21-327, St. Paul, MN 55121.

MASTERCARD AND VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.

DOYOU OFTEN WISH THAT THESMITH COMPANY WASTHE SMITH \& SMITH\& SMITH \& SMITH COMPANY?

Business people often find themselves doing so many things that just one of them isn't enough. So hire some of the needy and disadvantaged young people of America this summer to help you. Hiring them can also help you in another very important way. Because a business that hires economically disadvantaged youth during the summer may get as much as an 85% tax credit on the first $\$ 3,000$ of wages you pay them. Write the National Alliance of Business at P.O. Box 7207, Washing. ton D.C. 20044. And support your local summer-jobs-for-youth programs. You'll be doing something for yourself, for your business, for your community, and for the needy youth of America, too.

LET'S GET ALL OF AMERICA WORKIMG AGAM.

Ad APUBLIC SERVICE THE ADVERTISING COUNGIL

SPEAKERS AND COMPONENTS
(1) PIONEER:

III
Hermoncs
EMINENCE
M MOTOROLA

12" POLY WOOFER

@ PIONEER
Super duty, 40 oz . magnet. Polypropylene cone. 100 watts RMS, 145 watts max. 4 and 8 ohm compatible (6 ohm). $2^{\text {n }}$ voice coil. is $=25$ $\mathrm{Hz} . \mathrm{VAS}=10.8 \mathrm{cu} . \mathrm{ft}, \mathrm{QTS}=, 166$. Response: $25-1,500 \mathrm{~Hz}$. Net weight: 9 lbs .
\#290-125 $\quad \$ 336.80 \quad \$ 34.50$
(1-3) (4-up)
$15^{\prime \prime} 3$-WAY, 125 WATT SYSTEM
Our "Top-of the Line" system. The system features elements specifically selected to produce a balanced output throughout the full frequency bandwidth of the system. System includes: (1) \#290-155 $15^{\prime \prime}$ polypropylene woofer rated at 145 watts max, (2) \#280-020 cup midranges, (1) \#270-035 $4^{\prime \prime}$ soft dome tweeter, (1) \#260-215 200 watt 3 -way crosstweeter, (1) \#260-215 200 watt 3 -way cross-
over, (2) \#260-265 100 watt mid, tweeter ' over, (2) \#260-265 100 watt mid, tweeter " L
pad attenuators, (1) \#260-300 speaker terminal, and (1) \#260-340 grille cloth.
\#15-125

12" PIONEER SUB WOOFER () PIONEER

Dual voice coil sub woofer. 30 oz . magnet, $2^{\text {n }}$ voice coil. 100 watts RMS, 145 watts max. is $=25$ Hz .6 ohm (4 and 8 ohm compatible). $\mathrm{SPL}=89$ $\mathrm{dB} 1 \mathrm{~W} / 1 \mathrm{M}$. Response: $25-700 \mathrm{~Hz} . \mathrm{QTS}=.31$, $V A S=10.3 \mathrm{cu} \mathrm{ft}$. Pioneer $\#$ A30GU30-5SD. Net weight: 6 lbs .
\#290-145 \$39.80 \$36.80
(1-3) (4-up)
$\$ 99.95$

Each

340 E. First St., Dayton, OH 45402
FAX: 513 222-4644

18" EMINENCE WOOFER

EMINENCE

100 oz . magnet, 3° voice coil. 250 watts RMS, 350 watts max. $8 \mathrm{ohm}, 30 \mathrm{~Hz}$ resonant fre 350 watts max, 8 ohm, 30 Hz resonant fre-
quency. $22-2700 \mathrm{~Hz}$ response. Efficiency: 95 dB IW/1M. Paper cone treated accordian surround. Net weight: 29 lbs .
\#290-200 \$98.80
\$89.50
(1-3)
(4-up)
PIONEER HORN TWEETYER
Mylar dome, 2.93 oz barium ferrite magnet barium ferrite magnet 8 ohm. Response: 1,800 $20,000 \mathrm{~Hz}$. 35 W RMS 50 W max. is $=2,000 \mathrm{~Hz}$ SPL $=106 \mathrm{~dB}$. Pioneer \# AHE $60-51 \mathrm{~F}$.
$\begin{array}{lll}\text { \#270-050 } & \$ 6.50 & \$ 5.90 \\ & (1-9) & (10-\mathrm{up})\end{array}$
3-WAY 100W CROSSOVER
$12 \mathrm{~dB} /$ octave rolloff. 800 $\mathrm{Hz}, 5000 \mathrm{~Hz} .8$ ohm. 100 watts RMS. $\$ 12.50$ $\$ 9.95$
(1-9)

10 AMP SOLID STATE RELAYS

ELECTROL\＃S2181

 CONTROL：Rated 5.5 to 10 Vdc （will operate on $3-32 \mathrm{Vdc}$ ）． LOAD： 10 amp＠ 240 Vac
 $21 / 4^{\prime \prime} \times 13 / 4^{\prime \prime} \times 7 / 8^{\prime \prime}$
CAT\＃SSRLY－10B $\$ 9.50$ each QUANTITY DISCOUNT 10 for $\$ 85.00$－ 25 for $\$ 175.00$ 50 for $\$ 300.00 \cdot 100$ for $\$ 500.00$

STROBE KIT

Variable rate strobe kit，flashes be－ tween 60 to 120 times per minute．Will operate on either 6 or 12 Vdc depend－ ing upon how you wire the circuit．
Comes complete with P．C．board and instructions for easy assembly．
CAT\＃STROBE－1 $\$ 7.50$ each

CASSETTE MECHANISM

Alpine cassette transport mechanism． Includes stereo tape head， Mitsubishi \＃MET－3RF2B 13．2 Vdc motor，belt，pulleys，capstan，fast－ forward，rewind and eject actuator． Does not include amplifier section． $61 / 2^{\prime \prime} \times 51 / 4^{\prime \prime} \times 13 / 4^{\prime \prime}$.

CAT\＃CMEC－5 \＄7．50 each 10 for $\$ 65.00$

PIEZO

 WARNING
DEVICE

Murata Erie \＃PKB8－4AO High pltched audble alarm．Op－ erates on 3－20 Vdc＠ 20 ma. 1＂* high $\times 7 / 8^{\circ}$ dia．P．C．board mount． CATI PBZ－84 $\$ 1.75$ each

XENON TUBE

 HE$1^{\prime \prime}$ long flashtube with $31 / 2^{\prime \prime}$ red and black leads．Ideal for electronic flash or strobe projects． CAT＊FLT－3 2 for $\$ 1.00$

NICKEL－CAD BATTERIES （RECHARGEABLE） SPECIALII AAA SIZE Panasonicः P－18AAA 1.2 volt © 180 MAh CAT\＃NCB－AAAX $\$ 1.50$ each 10 for $\$ 13.50 \cdot 100$ for $\$ 125.00$

AA SZEE $\$ 2.00$ each 1.25 volts 500 mAh CAT＊NCB－AA AA SZE $\$ 2.20$ each WITH SOLDER TABS CAT\＃NCB－SAA
C SIZE $\$ 4.25 \mathrm{EACH}$ 1.2 volts 1200 mAh CAT＊NCB－C
D SIZE $\$ 4.50$ each 1.2 volts 1200 mAh CAT＊NCB－D

TRANSISTORS			
CATE	TYPE	case	PRICE
PN2z22	NPN	TO－92	5 for 75c
2N2904	PNP	TO－5	3 for \＄1．00
2N2906	PNP	T0－18	3 for \＄1．00
PN2907	PNP	T0－92	5 for 75e
2N3055	NPN	TO－3	\＄1．00 each
PN3569	NPN	T0－92	5 for 50e
2N3904	NPN	T0－92	5 for 75e
2N3906	PNP	T0－92	5 for 75e
2N4400	NPN	T0－92	5 for 75 e
2N4402	PNP	T0－92	5 for 75e
2N5400	PNP	TO－92	4 for \＄1．00
2N5880	PNP	TO－3	\＄2．00 each
2N5882	NPN	TO－3	\＄2．00 each
MJ2955	PNP	TO－3	\＄1．50 each
MJE2955T	PNP	T0－220	75 e each
MJE3055T	NPN	T0－220	758 each
TIP30	PNP	T0－220	758 each
TIP31	NPN	T0－220	75 e each
TIP32	PNP	T0－220	75 e each
TIP41	NPN	T0－220	75 e each
TIP42	PNP	T0－220	75 e oach
TIP121	NPN	T0－220	75 e each
TIP126	PNP	T0－220	75 e each

WIDE BAND AMPLIFIER

 NECः UPC1651G． 1200 Mhz ＠ 3 db. Gain：19db＠f $=500 \mathrm{hz} .5$ volt operation． Small package 4 mm dia．X 2.5 mm thlck． CATH UPC－1651 2 for $\$ 1.00$
10 for $\$ 4.50$－ 100 for $\$ 35.00$

> N-CHANNEL MOSFET IRF-511 TO-220 case CAT\% IRF 511
> $\$ 1.00$ each - 10 for $\$ 9.00$
> LARGE QUANTITY AVAILABLE

OPTO SENSOR

U shaped package with mounting ears． $1 / 8^{\circ}$ opening． $3 / 4^{4}$ mounting holes．CAT\＃OSU－5 50e each
10 for $\$ 4.50-100$ for $\$ 40.00$

TRANSFORMERS
ALL PLUG DIRECTLY INTO 120 VAC OUTLET 6 VdC ＠ 200 ma ．CATII DCTX－620 $\$ 2.25$ $6 \mathrm{Vdc} @ 750 \mathrm{ma}$ CAT＊DCTX－ 675 \＄3．50 $9 \mathrm{Vdc} @ 250 \mathrm{ma}$ ．CAT：DCTX－925 $\$ 2.50$ $12 \mathrm{Vac} @ 930 \mathrm{ma}$ ．CAT\＃ACTX－1293 $\$ 3.50$ 18 Vac © 1 amp ．CATA ACTX－1885 $\$ 3.50$

SWITCHES

ITT PUSH BUTTON ITT MDPL series． $3 / 4^{\circ} \mathrm{X}$ $1 / 2$ gray rectangular key cap．S．P．S．T．N．O．
Push to close．RATED： 0.1 amp switching， 0.25 amp carry current．P．C．mount．CAT；PB－8 $65 c$ each－ 10 for $\$ 6.00$－ 100 for $\$ 50.00$ 10 POSITION MINI－ROTARY Grayhill 56P38－01－1－10N－C Mini rotary switch．Non－shorting． 1 deck， 10 positions． $.125^{\circ}$ dia． shaft X．375 long．． 377° behind the panel depth．P．C．pins． CATII MRS－10 \＄2．50 each
HALL EFFECT SWITCH MICROSWITCH\＃4BE3 Slanted keyboard switch with hall offect sensor．Snaps into $5 / 8^{*}$ square chassis holo．Hall effect sensor slides easily from swich and can be used in other applications． CAT\＃HESW 4 for $\$ 1.00$ 10 for $\$ 2.00$－ 100 for $\$ 15.00$ SPDT PUSHBUTTON Marquard 1843
Rated 6 amps © 125／250 Vac． Black plastic pushbutton． Switch body： $.92^{\circ} \times .94^{\circ} \times .65^{\circ}$ ． CAT\＃PB－18 $\$ 1.65$ each $\cdot 10$ for $\$ 1.50$ each

LED＇S

STANDARD JUMBO
DIFFUSED T 1－3／4 size RED CAT\＃LED－1 10 for $\$ 1.50$－ 100 for $\$ 13.00$ GREEN CAT LED－2 10 for $\$ 2.00-100$ for $\$ 17.00$ YELLOW CATII LED－3 10 for $\$ 2.00 \cdot 100$ for $\$ 17.00$ FLASHING LED wth built in flashing circuit operates on 5 volts．．． RED CATH LED 4 \＄1．00 each GREEN

10 for $\$ 9.50$ CAT\＃LED－4G $\$ 1.00$ each

BI－POLAR LED Lights RED one direction， GREEN the other．Two loads． CAT\＃LED－ 62 for $\$ 1.70$

LED HOLDER Two pleco holder． CAT\＃HLED 10 for 65 e

RELAYS

12 VOLT D．C．COIL S．P．D．T． Omronः G2E－184P 4 Amp contacts 335 ohm coil． Sugar cube size． $.61^{\circ} \mathrm{X} .42 \times .44^{*} \mathrm{high}$. P．C．mount with pins on DIP spacing． CAT解 RLY－787 \＄1．50 each 120 VOLT A．C．－D．P．D．T． GUARDIAN：1220U－04 10 Amp contacts． 1，100 ohm coll $1.700^{\circ} \times 1.578^{\circ} \times$ 1．687．Clear polycarbonate cover．Gold plated solder or socket mount terminals． CAT\＃RLY－228 $\$ 3.50$ each

CALL OR WRITE FOR OUR FREE CATALOG OVER 4000
PARTS！

MAIL ORDERS TO： ALL ELECTRONICS

P．O．BOX 567

VAN NUYS，CA 91408
twx－5101010163（ALL ELECTRONIC）
OUTSIDE THE U．S．A．
SEND \＄2．00 POSTAGE FOR A CATALOG！！

ORDER TOLL FREE 800－826－5432 INFO：（818）904－0524
FAX：（818）781－2653 MINIMUM ORDER $\$ 10.00$ QUANTITIES LIMITED CALIF．ADD SALES TAX USA：$\$ 3.00$ SHIPPING FOREIGN ORDERS INCLUDE SUFFICIENT SHIPPING．NO C．O．D．

+
 E:JDR Microdevices
 30 DAY MONEY BACK GUARANTEE - 1 YEAR WARRANTY ON ALL PRODUCTS • TOLL-FREE TECHNICAL SUPPORT COMPLETE CUSTOMER SATISFACTION • SUPERIOR SERVICE • FRIENDLY, KNOWLEDGEABLE SALES STAFF

STATIC RAMG

PART	SIZE	SPEED	PRICE
2112	256×4	450ns	2.99
2114	1024×4	450ns	. 99
2114L-2	1024×4	200ns	1.49
TC5516	2048×8	250ns	3.95
TMM2016-200	2048x8	200ns	3.25
TMM2016-150	2048×8	150 ns	3.29
TMM2016-100	2048x8	100ns	4.29
HM6116-4	2048×8	200ns	4.95
HM6116-3	2048×8	150ns	5.95
HM6116-2	2048×8	120ns	6.45
HM6116LP-4	2048×8	200ns	5.95
HM6116LP-3	2048×8	150ns	6.45
HM6116LP-2	2048×8	120ns	6.95
HM6264LP-15	8192×8	150ns	9.95
HM6264LP-12	8192x8	120 ns	10.95
HM43256LP-15	32768×8	150ns	12.95
HM43256LP-12	32768×8	120ns	14.95
HM43256LP-10	32768×8	100 ns	19.95

CALL FDRVOLUME QUOTES ORDER TOLL FREE

6501		$80 \square 1$		$82 \square 1$	
6502	2.25	8031	3.95	${ }^{8253-5}$	1.95
6502A	2.69	8035	1.49	8254	2.79
${ }^{65028}$	4.25	8039	1.95	8255	1.49
${ }^{65} 502^{\circ}$	7.95	8052 AH		8255-5	1.59
6520	1.65	BASIC	34.95	8256	15.95
6522	2.95	8080	2.49	8259	1.95
6522A	5.95	8085	1.95	$8259-5$	2.29
6526	13.95	$8085 \mathrm{~A}-2$	3.75	8272	4.39
6532	5.95	8085	6.49	8274	4.95
6545A	3.95	8088	5.99	8275	16.95
6551	2.95	$8088-1$	12.95	8279	2.49
${ }^{6551 A}$	6.95	8088-2	7.95	8279.5	2.95
- ${ }^{\text {cmos }}$		8155	2.49	8282	3.95
		8156	2.95	8283	3.95
		8155-2	3.95	8284	2.25
		8741	9.95	8286	3.95
		8742	29.95	8287	3.95
	1	8748 8749	7.95	8288	4.95
08		8749 8755	9.95 14.95		
6800 6802	1.95 295				
${ }_{6802}$	${ }_{3}^{2.95}$	${ }_{80286-8}$	${ }_{249.95}$	Z-8	
${ }_{6803}$	3.95				
6809 68809	2.95			Z80A-CPU	1.25 1.29
68809 6809	5.99 2.95	82	$0 \square$	${ }_{\text {Z80B-CPU }}^{\text {Z80A-CPU }}$	${ }^{1.29}$
68809E	5.49	8205	3.29	Z80A.CTC	1.69
6810	1.95	8212	1.49	z80日-CTC	4.25
${ }_{6820} 68$	2.95	8216	1.49	Z80A-DART	T 5.95
${ }^{6821}$	1.25	8224	2.25	Z80日-DART	T 6.95
${ }^{68821}$	1.85	8228	2.25	Z80A-DMA	5.95
6840	3.95	8237	3.95	Z80A-PIO	1.89
6845	2.75	$8237-5$	4.75	z808-P10	4.25
$68 \mathrm{B45}$	4.95	8238	4.49	z80A-S10/0	5.95
6847	4.75	8243	1.95	z80B-S10/0	12.95
6850	1.95	8250	6.95	z80A-S10/1	5.95
${ }^{68850}$	1.75	8251	1.29	Z80A-S10/2	5.95
6883	22.95	8251 A	1.69	z80B-S10/2	12.95
68000	9.95	8253	1.59	z8671BASIC	IC 9.95

WRCHFINE SPOTRLICNTY

 S[GI HDGT ADAPTOR $\mathbf{j} 49.95$A LOW POWER, SHORT SLOT CARD FOR PC COMPATIBLES THAT CAN CONTROL UP TO SEVEN SCSI DEVICES. THIS POPULAR STANDARD OFFERS SPEED, EXPANDABILTTY AND THE ADVANTAGES
INCLUDES CABLES. MCT-SCSI

DYNAMIC RAME

PART	SIZE	SPEED	PRICE	PART	SIZE	SPEED	Vpp	PRICE
4116-200	16384×1	200 ns	. 89	2708	1024×8	450ns	25 V	4.95
4116-150	16384×1	150 ns	. 99	2716	2048×8	450 ns	25 V	3.49
MK4332	32768×1	200 ns	6.95	2716-1	2048×8	350ns	25 V	3.95
4164-150	65536x1	150ns	2.89	2732	4096x8	450ns	25 V	3.95
4164-120	65536x1	120ns	3.19	2732A	4096×8	250ns	21 V	3.95
4164-100	65536×1	100 ns	3.95	27 C 64	8192×8	250 ns	12.5 V	4.95
TMS4164	65536×1	150 ns	2.89	2764	8192×8	450 ns	12.5 V	3.49
TMS4416	16384×4	150ns	8.95	2764-250	8192×8	250 ns	12.5 V	3.69
41128-150	131072x1	150ns	5.95	2764-200	8192×8	200ns	12.5 V	4.25
TMS 4464-15	65536×4	150ns	10.95	MCM68766	8192×8	350ns	21 V	15.95
TMS4464-12	65536×4	120 ns	11.95	27128	16384×8	250ns	12.5V	4.95
41256-150	262144x1	150 ns	12.45	27128A-200	16384×8	200ns	12.5 V	5.95
41256-120	262144×1	120 ns	12.95	27 C 256	32768×8	250ns	12.5 V	7.95
41256-100	262144×1	100 ns	13.45	27256	32768×8	250 ns	12.5 V	5.95
41256-80	262144x1	80 ns	13.95	27256-200	32768×8	200ns	12.5 V	7.95
HM51258-100	262144x1	100ns	13.95	27512	65536x8	250 ns	12.5 V	11.95
1 M8-120	1048576x1	120ns	34.95	27 C 512	65536×8	250ns	12.5 V	12.95
1 MB-100	1048576x1	100 ns	37.95	27C101-20	131072X8	200 ns	12.5 V	34.95

CD-PROCES50RS

3DDAYMDNEY-BACK GUARANTEE TOLL-FREE TECHNILAL SUPPDRT

LINEAR CDMPDNENTS

TLO71	. 69	Lм380	. 89	XR2206	3.95
TLO72	1.09	LM383	1.95	XR2211	2.95
TLO74	1.95	LM386	. 89	LM2917	1.95
TLOS1	59	LM393	45	CA3045	89
TLO82	. 99	LM394H	5.95	СА3146	129
TLOS4	1.49	LM399H	5.95	MC3373	
LM301	34	TL494	4.20	M $\mathbf{C 3 4 7 0}$	1.25
LM309K	1.25	TL497	3.25	MC3490	8.95
LM310	1.75	NE555	29	MC3487	295
LM311	. 59	NE556	49	Lм3900	49
Lm311H	. 89	NE558	79	LM3909	98
LM311K	3.49	NE564	1.95	LM3911	2.25
LM312H	1.75	LM565	. 95	LM3914	1.89
Lm317	. 69	LM566	1.49	LM3915	1.89
Lм318	1.49	LM567	. 79	MC4024	3.49
LM319	1.25	NE570	2.95	MC4044	3.99
Lм ${ }_{\text {¢ }}$	3.49	NE590	2.50	RC4136	1.25
LM324	34	NE592	. 98	RC4558	. 69
LM331	3.95	LM723	49	LM1360	1.49
LM334	1.19	LM733	. 98	75107	1.49
LM335	1.79	LM741	. 29	75108	1.49
LM336	1.75	LM747	. 69	75110	1.95
Lм338К	4.49	MC1330	1.69	75150	1.95
LM339	. 59	MC1350	1.19	75154	1.95
LF347	2.19	LM1458	35	75188	1.25
LF353	. 59	LM1488	. 49	75189	25
LF356	. 99	LM1489	. 49	75451	. 39
LF357	. 99	LM1496	. 85	75452	39
LM358	. 59	ULN2003	. 79	75477	1.29

HIGH 5PEED CMDS LDGIC

HIGH SPEES CMOS LOGIC					
74HC00	. 21	74HC244	. 85	74 HCT 138	. 35
74HC04	. 25	74 HC 245	. 85	74HCT139	. 55
74 HCO 8	. 25	$74 \mathrm{HC273}$. 69	${ }^{74 \mathrm{HCT} 157}$. 59
$74 \mathrm{HC14}$	35	74 HC 367	. 69	$74 \mathrm{HCT161}$	79
74 HC 32	. 35	$74 \mathrm{HC373}$. 69	74 HCT 240	. 89
$74 \mathrm{HC74}$. 35	74HC390	. 79	74 HCT 244	. 89
$74 \mathrm{HC138}$	45	$74 \mathrm{HC374}$. 69	74 HCT 245	. 99
$74 \mathrm{HC139}$. 45	$74 \mathrm{HC4040}$. 89	74 HCT 273	. 99
$74 \mathrm{HC154}$	1.09	$74 \mathrm{HCT00}$. 25	74 HCT 373	. 99
$74 \mathrm{HC157}$. 55	$74 \mathrm{HCTO4}$	27	74 HCT 374	. 99
$74 \mathrm{HC161}$. 65	74HCT08	. 25	74 HCT 393	. 99
$74 \mathrm{HC164}$. 65	$74 \mathrm{HCT32}$. 27	$74 \mathrm{HCT4040}$	99
74HC175	. 59	74HCT74	. 45	74 HCT 4060	1.49
	STANDARD CMOS LDEIC				
4001	. 19	4028	. 65	4069	. 19
4011	. 19	4040	. 69	4070	29
4013	35	4042	. 59	4081	22
4015	. 29	4044	. 69	4093	49
4016	. 29	4046	. 69	14411	9.95
4017	49	4047	. 69	14433	14.95
4018	. 69	4049	29	14497	6.95
4020	. 59	4050	29	4503	49
4021	. 69	4051	. 69	4511	. 69
4023	. 25	4052	. 69	4518	85
4024	49	4053	. 69	4528	. 79
4025	. 25	4060	69	4538	. 95
4027	. 39	4066	29	4702	9.95

V-2D GERIEG
SPEED UP YOUR PC BY 10 TO 40% !

- HIGH SPEED ADDRESS CALCULATION IN HARDWARE - SUPERSET OF SOS INSTRUC - SUPERSET OF 8083 INSTRUCTION SET

LOW POWER CMOS	
V20.	5 MHz
$\mathrm{V} 20^{\circ}$	8.95
	10 MHz

VDLTAGE REGULATORS				PALS	
				16 L 8	2.95
78057	49	7812 K	1.39	16R8	2.95
78087	49	7905K	1.69	16R6	2.95
7812 T	49	7912K	1.49	16 R 4	2.95
${ }^{78155}$	49	${ }_{78 L 05}$. 49		
7905T	. 59	78.12	. 49	UAF	5
7908T	. 59	79L05	. 69		
${ }^{7912 T}$. 59	7912	1.49	AY5-1013	3.95 4.95
7805 K	. 59	LM323K	3.49	AY3-1015	
	1.59	LM338K	4.49	${ }_{2651}$	3.95 4.95
MISCELLANEDUS				IM6402	3.95
				1 I 6403	9.95
ADC0804	2.99	9334	1.75	INS8250	6.95
ADC0809	3.85	9368	2.85	NS16450	10.95
DACOBOO	3.29	9602	. 69		
DACOSOB	1.95	ULN2003	79	INTERSIL	
DAC1022	5.95	MAX232	7.95	ICL7107	10.95
MC1408L8	1.95	MC3470	1.95	${ }^{\text {ICLIV6 }}$	10.95
$8{ }^{\text {¢ }} 28$	1.29	MC3487	2.95	Cliso3	1.99
8т97	. 59	AY5-3600		ICL0038	3.85
DP8304	2.29	PRO	11.95	ICM7207A	5.95
		PRO	11.95	ICM7208	15.95

74LEDD TTL LDGIC

74LS00	. 16	74.5112	29	74LS241	. 69
74LS01	. 18	74 LS122	45	74LS242	. 69
74LS02	. 17	7415123	. 49	74LS243	. 69
74LS03	. 18	$74 \mathrm{LS124}$	2.75	74LS244	. 69
74LS04	. 16	74 LS125	. 39	74LS245	79
74LS05	. 18	$74 L 5126$	39	74LS251	49
74LS08	. 18	74LS132	39	74LS253	49
74LS09	. 18	$74 \mathrm{LS133}$	49	74 LS257	39
74LS10	. 16	74 LS136	39	74LS258	49
74LS11	. 22	7415138	39	74LS259	1.29
74LS12	22	74LS139	39	74LS260	. 49
74LS13	.26	74 LS145	. 99	74LS266	. 39
74LS14	39	74 LS147	. 99	74LS273	. 79
74LS15	. 26	74 LS148	. 99	74LS279	39
74LS20	. 17	74LS151	. 39	74LS280	1.98
74 LS21	. 22	74 LS153	. 39	74LS283	. 59
74 LS22	. 22	74.5154	1.49	74LS290	89
74LS27	. 23	$74 L 5155$. 59	74LS293	89
74LS28	. 26	74 LS156	. 49	74LS299	1.49
74LS30	. 17	74 LS157	35	74 LS322	3.95
74LS32	. 18	74 LS158	. 29	74 LS323	2.49
74L533	. 28	74LS160	. 29	74LS365	. 39
74LS37	. 26	$74 L 5161$. 39	74LS367	. 39
74.5388	. 26	7415162	. 49	74LS368	. 39
74LS42	. 39	74LS163	. 39	74 LS373	. 79
74 LS47	. 75	74LS164	. 49	74LS374	. 79
74LS48	. 85	74LS165	. 65	74.5375	. 95
74LS51	. 17	74LS166	. 95	74 LS377	79
74L573	. 29	74LS169	. 95	74LL3390	1.19
74L574	. 24	74 LS173	. 49	74LS393	.79
74LS75	. 29	74LS174	. 39	74LS541	1.49
74LS76	. 29	74 LS175	. 39	74.5624	1.95
741583	. 49	74 LS191	. 49	74LS640	. 99
74LS85	. 49	74 LS192	. 69	74LS645	. 99
74LS86	. 22	74 LS193	. 69	74.5670	. 89
74Ls90	. 39	74 LS194	. 69	74.5682	3.20
74LS92	. 49	74LS195	. 69	74LS688	2.40
74L593	. 39	74 LS196	. 59	74LS783	22.95
74LS95	. 49	74 LS197	. 59	25LS2521	2.80
74LS107	. 34	74LS221	. 59	26 LS31	1.95
74LS109	. 36	74LS240	. 69	26LS32	1.95

JDR MICRODEVICES AND THE JDR MICRODEVICES LOCO ARE REGISIERED TRAOEMARKS OF JDR MICRODEVICES. IBM, AT, PS/2 ARE TRADEMARKS OF IWTERMATIONAL BUSINESS MACHINES.

SOLDER STATION
 UL APPROVED
 ADJUSTABLE HEAT SETTING TIP TEMPERATURE READOUT - REPLACEMENT TIPS AVAILABLE $\$ 2.95$ $168-2 \mathrm{C}$
 $$
4.89^{95}
$$

FULL IYEAR WARRANTYON EVERY PRDDUCI!

WIREWRAP

PROTOTYPE CARDS

FR-4 EPOXY GLASS LAMINATE WITH GOLD PLATED EDGE-
CARD FINGERS AND SILK SCREENED LEGENDS.

FOR PS/2
JDR-PR32 32 BIT PROTOTYPE CARD JDR-PR16 16 BIT WITH IVO DECODING LAYOUT JDR-PR16pK PARTS KIT FOR JDR-PR16 ABOVE JDR-PR16V 16 BIT FOR VIDEO APPLICATIONS

FOR AT

JDR-PR10 168 IT WITH VO DECODING LAYOUT 34.95 JDR-PR10PK PARTS KIT FOR JDR-PR10 ABOVE FOR XT \begin{tabular}{llr}
IBM-PR1 \& WITH +5V AND GROUND PLANE \& 27.95

IBM-PR2 \& AS ABOVE WITH I/O DECODING LAYOUT 29.95

\hline

IBM-PR1 \& WITH +5V AND GROUND PLANE \& 27.95

IBM-PR2 \& AS ABOVE WITH I/O DECODING LAYOUT 29.95

\hline
\end{tabular} 69.95

49.95
15.95 15.95
39.95 9.95 4.95

PDWER SUPPLIES	
APPLE TYPE SUPPLY	75 WATT SUPPLY
- APPLE CONNECTOR	- ULAPPROVED
- +5V@ 6A, +12V@3A,	$\square+5 \mathrm{~V} @ 7 \mathrm{~A},+12 \mathrm{~V} @ 3 \mathrm{~A}$.
-5V@1A, -12V@1A	-5V@300MA. - 12 V @ 250 MA
PS-A $\$ 49.95$	PS-1558 \$34.95
FLOPPY DRIVE SUPPLY	MICRO SUPPLY
E +5 V @ 2.5A, +12 V @ 2A.	- UL APPROVED, 144 WATTS
-12V@.1A	- $+5 \mathrm{~V} @ 18 \mathrm{~A},+12 \mathrm{~V} @ 4 \mathrm{~A}$.
- +5V@ 5A. IF +12 NOT	-12V@ 500MA
USED	PS-1554 \$29.95
PS-ASTEC \$24.95	

DISK CDNTRDLLERE
 "SNAPABLE"

$\begin{array}{llll}1771 & 4.95 & 2797 & 29.95 \\ 1791 & 9.95 & 8272 & 4.39\end{array}$ $\begin{array}{llll}1791 & 9.95 & 8272 & 4.39 \\ 1793 & 9.95 & \text { UPD765 } & 4.39\end{array}$ $\begin{array}{llll}1795 & 9.95 & \text { UPD765 } & 4.39 \\ 1797 & 12.95 & \text { MB8876 } & 12.95 \\ 179 & 12.95 & & \end{array}$ $\begin{array}{rrrr}1797 & 12.95 & \text { MB8877 } & 12.95 \\ 2791 & 19.95 & 1691 & 6.95 \\ 2793 & 19.95 & 2143 & 6.95\end{array}$

HEADERS
CAN BE SNAPPED APART
ALL WITH 1" CENTERS
$\begin{array}{llr}1 \times 40 & \text { STRAIGHT LEAD } & .99 \\ 1 \times 40 & \text { RIGHT ANGLE LEAD } & .49 \\ \text { 2×40 } & \text { 2 STRAIGHT LEADS } & 2.49 \\ \text { 2×40 } & \text { 2 RIGHT ANGLE LEADS } & 2.99\end{array}$

IDC CON/VECTORG/RIBBDN CABLE

DESCRIPTION	ORDER BY	CONTACTS					
		10	20	26	34	40	50
SOLDER HEADER	IDHyas	82	1.29	1.68	2.20	2.58	3.24
RIGHT ANGLE SOI DER HEADER	IDHxxSR	85	1.35	1.76	2.31	2.72	3.39
WIREWRAP HEADER	IDHyxW	1.86	2.98	3.84	4.50	5.28	6.63
RIGHT ANGLE WIREWRAP HEADER	IDH \times xWR	2.05	3.28	4.22	4.45	4.80	7.30
RIBBON HEADER SOCKET	IDSxx	. 63	89	. 95	1.29	1.49	1.69
RIBBON HEADEA	IDMxx	-	5.50	6.25	7.00	7.50	8.50
RIBBON EDGE CARD	IDExx	85	1.25	1.35	1.75	2.05	2.45
10° PLASTIC RIBBON CABLE	RCxx	1.60	3.20	4.10	5.40	6.40	7.50

FOR ORDERING INSTRUCTIONS, SEE D-SUBMINIATURE CONNECTORS BELOW
D-ELUBMINIATURE CON/NELTIRG

DESCRIPTION		ORDER BY	CONTACTS						
		9	15	19	25	37	50		
SOLDER CUP	MALE		DBxxP	. 45	. 59	. 69	. 69	1.35	1.85
	FEMALE	DBxxS	. 49	. 69	. 75	. 75	1.39	2.29	
RIGHT ANGLE PC SOLDER	MALE	DBxxPR	. 49	. 69	-	. 79	2.27	-	
	FEMALE	DBxxSR	. 55	. 75	-	. 85	2.49	-	
WIREWRAP	MALE	DBxxPWW	1.69	2.56	-	3.89	5.60	-	
	FEMALE	DBxxSWW	2.76	4.27	-	6.84	9.95	-	
IDC RIBBON CABLE	MALE	IDBxx ${ }^{\text {P }}$	1.39	1.99	-	2.25	4.25	-	
	FEMALE	IDBxxS	1.45	2.05	.-	2.35	4.49	-	
HOODS	METAL	MHOODxx	1.05	1.15	1.25	1.25	-	-	
	PLASTIC	HOODxx	. 39	. 39	--	. 39	. 69	. 75	

ORDERING INSTRUCTIONS:
INSERT THE NUMBER OF CONTACTS IN THE POSITION MARKED " $x x^{*}$ OF THE ORDER BY PART NUMBER LISTED. EXAMPLE : A 15 PIN RIGHT ANGLE MALE PC SOLDER WOULD BE DB15PR. MOUNTING HARDWARE 59;

IC SDCKETG/DIP CDN/NECTORS

DESCRIPTION	ORDER BY	CONTACTS								
		8	14	16	18	20	22	24	28	40
SOLDERTAIL SOCKETS	XxST	11	11	12	15	18	15	20	22	. 30
WIREWRAP SOCKETS	xxWw	. 59	. 69	. 69	. 99	1.09	1.39	1.49	1.69	1.99
ZIF SOCKETS	ZIFxX	-	4.95	4.95	-	5.95	-	5.95	6.95	9.95
TOOLED SOCKETS	AUGATxXST	. 62	. 79	89	1.09	1.29	1.39	1.49	1.69	2.49
TOOLED WW SOCKETS	AUGATxxWW	1.30	1.80	2.10	2.40	2.50	2.90	3.15	3.70	5.40
COMPONENT CARRIERS	ICCxx	. 49	. 59	. 69	. 99	. 99	. 99	. 99	1.09	1.49
DIP PLUGS (IDC)	IDPxx	. 95	49	. 59	1.29	1.49	-	. 85	1.49	1.59
FOR ORDERING INSTRUC	TONS SEE D-SU	ATL	E C	NN	CYO	S $A B$	VE			

SHORTING

 BLOEKS 5/\$1.00

GENDER CHANGERG
GENDER-FF FEMALE-FEMALE 7.95 GENDER-MM MALE-MALE $\quad 7.95$ $\begin{array}{ll}\text { GENDER-MF MALE-FEMALE } & \mathbf{7 . 9 5} \\ \text { GENDER-NM NULL MODEM } & 8.95\end{array}$ $\begin{array}{ll}\text { GENDER-NM NULL MODEM } & 8.95 \\ \text { GENDER-JB JUMPER BOX } & 8.95 \\ \text { GEN }\end{array}$ $\begin{array}{llr}\text { GENDER-JB JUMPER BOX } & 8.95 \\ \text { GENDER-MT MINITESTER } & 14.95\end{array}$ *

R5-232

BREAKILT BOX

FOR TROUBLESHOOTING SERIAL COMMUNICATIONS

- OPENCLOSE INOIVIDUAL CIRCUITS - 20 JUMPERS CROSS-CONNECT ANY TWO Cifcuirs EDOLEDS SHOW CIRCUTT ACTVITY
GENDER-BO
$\$ 34.95$

芹常 \&

JDYGTICK

- SET X-Y AXIS FOR AUTO CENTER OR FREE MOVEMENT - FIRE BUTION FOR USE WITH GAME - COMPATIBLE WITH IBM, APPLE II, III, IIC, ATARI \& VIC 20/64 GC-10
${ }^{19}{ }^{95}$

LITHIUM BATTERIEG

- 6.8V FOR 286/386 COMPUTERS
MOTHERBOARD CONNECTOR - MOTHERBOARD CONNECTOR ADHESIVE VELCRO STRIP FOR
EASY MOUNTING LITHIUM 6.8 V
$\$ 11.95$
$\begin{array}{lll}\begin{array}{lll}\text { LITHIUM-3V } & \text { 3V COIN TYPE LITHIUM BATTERY } & \$ 1.95 \\ \text { 3V-MHW } & \text { BATTERY HOLDER }\end{array} & \$ 1.49\end{array}$

, -

$1.44 \mathrm{MB} 31 / \mathbf{m}^{\prime}$ DRIVE ＊ 149^{95}

－ULTRA high density
－ALTRA HIGH DENSITY FDD－1．44X BLACK FACEPLATE FDD－1．44A BEIGE FACEPLATE

IIP HEIEHT FLDPPY DIGK DRIVES FD－55B $\quad 5-1 / 4^{\circ}$ TEAC DS／DD 360K $\$ 99.95$ FD－55G 5－1／4＊TEAC DSHD 1．2M $\$ 129.95$ M2551A 5－1／4＂FWITSU DS／DD 360K $\$ 89.95$ H25D 560 5－14．$\$ 119.95$
$\begin{array}{ll}\text { FDD－360 } & 5-1 / 4^{\circ} \text { DS／DD } 360 \mathrm{~K} \\ \text { FDD－12 } & 5-1 / 4^{\circ} \text { DS／HD } 12 \mathrm{M}\end{array}$
$\begin{array}{ll}\text { FDD－1．2 } & \text { 5－1／4 } \\ \end{array}$
FDD－3．5A \quad 3－1／2 MITSUBISHI DS／DD（BEIGE）
FDD－3．5X $\quad 3-1 / 2$ MITSUBISHI DSIDD（BLACM
TAPE BACK－UP DRIVES
AR5240X ARCHIVE TAPE DRIVE－XTS \＆ATS $\$ 369.95$
AR5540A FASTER TAPE DRIVE－ATS ONLY $\$ 369.95$ AR340 40 MB TAPE CARTRIDGES $\$ 24.95$

DISKRETTTES

$\begin{array}{llr}\text { N－MD2D } & \text { BOX OF } 105-1 / 4^{*} 360 \mathrm{~K} \text { DS／DD } & \$ 6.95 \\ \text { N－MD2H } & \text { BOX OF } 105-1 / 4^{*} 1.2 \text { MB DS／HD } & \$ 13.95 \\ \text { N－3．5DS } & \text { BOX OF } 103-1 / 2^{*} 720 \mathrm{~K} \text { DS／DD } & \$ 16.95 \\ \text { N－3．5HD } & \text { BOX OF } 103-1 / 2^{*} 1.44 \text { MB DS／HD } & \$ 49.95\end{array}$ N－MD2DBULK 360 K DSIDD（MIN 50 DISKS） DRIVE ACCESSDRRIES
FD－ARAIL MTG．RALS FOR AT COMPATIBLE
年 $\$ 2.95$ FD－55MHW HALF．HEIGHT MOUNTING HARDWARE $\begin{array}{ll}\text { FD－5 MHW HALF－HEIGHT MOUNTING HARDWARE } \\ \text { FD－5Y } & \$.95 \\ \$ 2.95\end{array}$ HARD DISKG
Whatever your hard disk needs，we have rellable， high quality Seagate drives at the lowest prices available．Buy them alone，or with an MCT disk controller for even greater savings！

SIZE	MODEL	$\begin{gathered} \text { AVG. } \\ \text { SPEED } \end{gathered}$	HEIGHT	DRIVE ALONE	WITH MCT CONTROLER			
					HDC	RLL	AFH	AFH－RLL
20MB	ST－225	65 ms	Half	\＄225	\＄269		\＄339	
30MB RLL	ST－238	65 ms	Half	\＄249		\＄299		\＄389
40MB	ST－251	40 ms	Half	\＄379	\＄419	．	\＄489	．
40MB	ST－251－1	28 ms	Half	\＄469	\＄509		\＄579	－
60MB RLL	ST－277	40 ms	Half	\＄449	－	\＄499	－	\＄589
30MB	ST－4038	40 ms	Full	\＄559	\＄603	－	\＄659	．
80MB	ST－4096	28 ms	Full	\＄629	．		\＄739	

NEWII SIGMA VEA CARI － 279^{50}

100% REGISTER COMPATIBLE VGA DISPLAY CARD
－VGA，EGA．CGA，HGC \＆MDA COMPATIBLE
－ 320×200 IN 256 COLORS
－ $640 \times 480,800 \times 600$ IN 16 COLORS
$80 \times 25,132 \times 44$ TEXT MODES
－SUPPORTS STANDARD DIGITAL \＆ANALOG MONITORS －UTILITY SOFTWARE INCLUDED
MCT－VGA

Your products and prices have kept us coming back now for two years．．．keep up the good work．＂ －P．S．，Sterling Helghts，MII
 ＂We＇ll continue to do business wlth you whenever we can．＂James Hillogass，Minneapolis，MN
 ＂．．I will not heaitate to order anything from JDR －because I know your policy is to stand behind your products 100% ．＂

-Robert Rindy, Grand Forks, MB
＂I found JDF＇s tech support to be respongive， holpful and honest＂－N．G．，Meadville，NY

INTERFACE CARDS
 BY MODULAR CIRCUIT TECHNOLOGY

DRIVE CDNTROLERS

FLOPPY DISKCONTROLUER＊29．95
SINGLE SLOT CONTROL OF 4 FLOPPIES
－INTERFACES UP TO 4 FDD＇S TO AN IBM PC OR
COMPATIBLE E SUPPORTS DSIDD AND DSIQD W／DOS 3.2 MCT－FDC

1．2MB FLOPPYCONTROLLER 659.95 ADD VERSATILTY AND CAPACITY TO YOUR SUPPORTS 2 DRIVES，CAN MIX 360 K AND 1.2 M ACT－FDC－1．2 MCT－FDC－1．2

FLOPPYIHARD CONTRDLLER \＄139．95

XT SYSTEM SHORT OF SLOTS？THIS CARD FREES ONE UP！ －INTERFACES UP TO 2 FDD＇S \＆ 2 HDD＇S，CABLING FOR 2 MCT－FH

2B6／3BE FLOPPYIHARD 149.95 FLOPPY／HARD DISK CONTROL IN A TRUE AT DESIGN
－SUPPORTS UP TO $2360 \mathrm{~K} / 720 \mathrm{~K} 1.2 \mathrm{MB}$ FDD＇S
SUPPORTS 2 HOD＇s USING STANDARD TABLES
MCT－AFH
HARD DISK CONTROLLER $\$ 79.95$
HARD DISK CONTROL AT AN ECONOMICAL PRICE
840 MB
－SUPPORTS 16 DRIVE SIZES INCLUDING $10,20,302$
MCT－HDC
RLL CDNTRGLIER
． 1719.95
TRANSFER DATA 50% FASTER
SUPPORTS UP TO 2 RLL HARD DRIVES
MCT－RLL
2BE／3EGFLDPPY／HARTR RLL－ 1 H99． 95 MPROVE SPEED AND STORAGE OF YOUR AT COMPATIBLE －SUPPORTS UP TO 2 RLL HARD DISCS AND 2 FLOPPIES MCT－AFH－RLL

MULTIFUNLTION CARDG

MLULTIIOFLDPPY CONTROLIER S7
SUPPORTS UP TO TWO 360 K FLOPPIES， 720 K W／DOS 3.2 －SERIAL，PARALLEL，GAME PORT，CLOCKICALENDAR
MCT－MIO
MIO－SERIAL－2ND SERIAL PORT
\＄15．95
MULTI IIDCARD
$\dagger 59.95$
USE WITH MCT－FH FOR MINIMUM OF SLOTS USED
SERIAL PORT，CLOCK CALENDAR WITH BATTERY
PARALLEL PORT ADDRESSABLE AS LPTI OR LPT MCT－10
2BE／3RGMTULTIFUNLTIDN HE39．95
ADDS UP TO 3 MB OF RAM TO YOUR AT
USER EXPANDABLE TO 1.5 MB OR 3 MB WITH OPTIONAL USER EXPANDABLE TO 1.5 MB OR 3 MB WITH OPTIONAL
PIGGYBACK BOARD（OK INSTALLED）INCLUDES SERIAL PIGGYBACK BOARD（ØI
AND PARALL
MCT－AMF－MC PIGGYBACK BOARD
MCT－AMF－MC PIGGYBACK BOARD
$\$ 29.95$

2EG／3BG RULETI IID CARD \＄ 559.95
USE WITH MCT－AFH MINIMUM OF SLOTS USED SERIAL SUPPORT CHIPS FOR HIGH SPEED OPS MCT－A10
AIO－SERIAL 2ND SERIAL PORT $\$ 24.95$

MEMORY CARDG

57GKRAMICARD 身59．95

 A CONTIGUOUS MEMORY SOLUTION IN A SHORT SLOT －USER SELECTABLE CONFIGURATION UP TO 576 MCT－RAMEXPANDED MEMERY CARA WHES． 95 2MB OF LOTUS INTEL MICROSOFT MEMORY FOR AN XT ORF USER EXPAND ABLE TO 2 MB CAN BE USED AS EXPANDED OR MCT－EMS
MCT－AEMS 286／386 VERSION

DIGPLAY ADAPTORG

MDNDEMROME GRAPHICS $\boldsymbol{5} 59.95$ TRUE HERCULES COMPATIBILITY SUPPORTS LOTUS 1－2－3 LPT2 USES VLSI CHIPS TO ENSURE RE UABIITY MCT－MGP

EGA ADAPTIRR
． 8189.95
100% IBM COMPATIBLE PASSES IBM EGA DLAGNOSTICS － 256 K OF VIDEO RAM ALLOWS 640×350 IN 16 OF 64 COLORS E COMPATIBLE WITH COLOR AND MONO－ CHROME ADAPTORS HERCULES COMPATIBLE MCT－EGA

CDLORERAPHICS ADAPTER \＄ 49.95 COMPATIBLE WITH IBM GRAPHICS STANDARDS －SUPPORTS RGB，COLOR，\＆COMPOSITE MONOCHROME 640／320 $\times 200$ RESOLUTION，LIGHT PEN INTERFACE MCT－CG

MDNEERAPHICS MULTIIID 其HG． 75 TOTAL SYSTEM CONTROL FROM A SINGLE SLOTI CLOCK CAL \quad RUN COLOR GRAPHICS SOFTWARE ONA MONOCHROME MONITOR MCT－MGMIO

285／3B6 MIONOERAPHIC5 I／D \＄ 599.95 VIDEO DISPLAY AND IO FUNCTIONS IN ONE CARD a 720×348 RESOLUTION， 80 \＆ 132 COLUMN TEXT MCT－MGAIO SERIAL \＆GAME PORTS MCT－MGAIO

BUILD YOUR OWN GYGTEMH

DVER 2D, ODO JDR GYGTEMS HAVE ALREADY BEEN BUILT. EAGY TD ASSEMBLE IN JUGT Z HDURG WITH A GEREWDRIVER. SAVE MONEY AND LEARN MORE ABDUT YOUR CDMPUTER AT THE SAME TIMEI 10 MHZ TURBD $808 B$ $5 \sqrt{5100}$

- INCLUDES SERIAL PORT, 2 PARALLEL PORTS, CLOCK CALENDAR AND GAME ADAPTOR \quad R RUNS COLOR
GRAPHICS ON A MONOCHROME MONITOR. MOTHERBOARD 256 K RAM MEMORY 135 WATT POWER SUPPLY 360K FLOPPY DRIVE \quad MONOGRAPHICS IO CARD
MONOCHROME MONITOR MONOCHROME MONITOR

12 MHz MINI-2B6 1232^{75}

- 12 MHZ MINI-286 MOTHERBOARD $\quad 512 \mathrm{~K}$ RAM MEMORY - MINI CASE WITH POWER SUPPLY - 84 KEY KEYBOARD \quad MONOCHROME MONITOR 1.2 MB FLOPPY DRIVE FLOPPY/ HARD CONTROL GRAPHICS ADAPTOR

16 MHz 1 Mb 386 +234865

- MYLEX 386 MOTHERBOARD 1 MB RAM ON BOARD 200 WATT POWER SUPPLY CASE E ENHANCED KEYBOARD 1.2 MB FLOPPY DRIVE FLOPPY/HARD CONTROLLER \& MONOGRAPHICS CARD
- MONOCHROME MONITOR

MOTHER:DAVIIS

TURBD 4. 7718 MHz

199.95

I XT COMPATIBLE E NORTON SI 1.7 日 4.77 OR 8 MHZ OPERATION WITH 8OOB-2 AND OPTION. AL 8087.2 CO- PROCESSOR \quad FRONT PANEL LED SPEED INDICATOR AND RESET SWITCH SET SUPPORTED \quad CHOOSE NORMALTURBO MODE OR SOFTWARE SELECT PROCESSOR SPEED MCT-TURBO
MCT-XMB STANDARD MOTHERBOARD
$\$ 87.95$

ID MHZ TURBD GINGLE CHIP BOBS

5129.95

EXT COMPATIBLE \quad NORTON SI 2.1 I USES LESS POWER, IMPROVES RELIABILITY KEY SELECTABLE SPEED, 4.77 MHZ OR 10 MHZ \# 2.3 TIMES FASTER THAN A STANDARD $\#$ RESET SWITCH. KEYLOCK, AND SPEED /POWER INDICATORS SUPPORTED MCT-TURBO-10

80286 6/10 MHz
. 1379.95
E. AT COMPATIBLE E LANDMARK AT SPEED 10 MHZ \# NORTON SI 10.3 - 8 SLOTS (TWO 8-BIT. SIX 16-BIT E HARDWARE SELECTION OF 6 OR 10 MHZ E FRONT PANEL LED INDICATOA - KEYLOCK SUPPORTED \because RESET SWITCH

MCT-286
12 MHz MINI-286
$\$ 399.95$
EAT COMPATIBLE LANDMARK AT SPEED 13.2 MHZ \# NORTON SI 11.6 \# 6 MHZ . 10 MHZ (O/1 WAIT STATE), 12 MHZ (1 WAIT STATE) \because ZYMOS ASICS FOR FEWER CHIPS, GREATER RELIABILITY I SUPPORTS 512 K -1024K MEMORY I RECHARGEABLE HIGH CAPACCTY NI-CAD BATTERY \& SIX 16 -BIT SLOTS, TWO 8 -BIT SLOTS m MOUNTS IN STANDARD XT CASE MCT-M286-12
MCT-M286 $6 / 10$ MHZ MINI 80286 BOARD .. $\$ 389.65$

THE IDEAL GYGTEM FDR DEVELDPERS. ALL MODULEG UGE A CDMMINN HDGT ADAPTDR CARD

 HDST ADAPTOR CARD. 9 29.95

- A UNIVERSAL INTERFACE FOR ALL THE PROGRAMMING MODULES MSER SELECTABLE PROGRAMMABLE ADDRES
SES PREVENT ADDRESSING CONFLICTS MENU-DRIVEN SOFTWARE PACKAGE E INCLUDES MOLDED CABLE MCT-MAC

UNIVERGAL MDDULE $\boldsymbol{\text { HIS }} \mathbf{~ \$ 9 9 . 9 9 ~}$ - PROGRAMS EPROMS, EEPROMS, PALS, BIPOLAR PROMS 8748 \& 8751 SERIES DEVICES \quad IESTS TIL, CMOS, DYNAMIC MCT-MUP

DIGITAL IC MODULE
.5129 .95

- TESTS TTL, CMOS, DYN. \& STATIC RAM $\#$ AUTO SEARCH MCT-MIC

16 MHz MYLEX 386
$\$ 1699.00$
IMB RAM ON BOARD 8 SLOTS (TWO 8-BIT, SIX 16-BIT) USES AMI BIOS
SUPPORTS 80287 MATH CO-PROCESSOR - SUPPORTS 80387 WITH ADAPTOR
64 KB CACHE FOR NEAR \varnothing WAIT STATE 20 MHZ VERSION AVAILABLE
MY-386MB
MY-386MB-4 FOUR MB MEMORY INSTALLED .. $\$ 2999.00$
MY-386MB-MCB MATH CO-PROCESSOR ADAPTOR BOARD..

- LANDMARK AT SPEED 23.2 MHZ NORTON SI 18.7 E 64 KB HIGH SPEED DIRECT MAPPED STATIC RAM CACHE 11 MB OR 2 MB MEMORY ON STD. MEMORY BOARD $\#$ UP TO 8 MB OF 32 -BIT MEMOAY ON PIGGYBACK MEMORY BOARD, FOR TOTAL OF 10 MB E AMI BIOS WITH 32 BIT EGA SUPPORT \because SOCKETED FOR 80387 MATH CO-PROCESSOR I ONE 8 -BIT. MY-386 JR (MEMORY CARD REQUIRED) MY-386 JR (MEMORY CARD REQUIRED)
MY-386JR2O 20 MHZ VERSION \qquad ... $\$ 1695.00$
 MY-386JR-M8 8 MB PIGGYBACK MEMORY BOARD OK INSTALLED $\$ 159.00$

16 MHz
 MYLEX MINI 386 +124900

 $\$ 149.00$
NEWI MODULAR PROGRAMMERE

EPROM MODULE

. 1719.95

- PROGRAMS $24-32$ PIN EPROMS, CMOS EPROMS AND EEPROMS FROM 16 K TO 1024 K
MCT-MEP
MCT-MEP-4 FOUR-EPROM PROGRAMMER $\$ 169.95$ MCT-MEP-8 EIGHT-EPROM PROGRAMMER $\$ 259.95$
PAL MODULE -249.95
- PROGRAMS MMI, NS, TI 20 \& TI 24 PIN DEVICES MCT-MPL

8748 MDDULE

- 179.95
- PROG. 8741, 8742, 8748, 8749 \& 8750 EPROMS \& PROMS. MCT-MMP
BI-PDLAR MODULE
$\$ 259.95$
- PROG. AMD, MMI, NS, TI \& SIGNETICS BI-POLAR PROMS MCT-MBP

JDR MICRODEVICES, 110 KNOWLES DRIVE, LOS GATOS, CA 95030 LOCAL (408) 866-6200 FAX (408) 378-8927 TELEX 171-110

- Fits many RCA and Panasonic portable VCRs - Replaces RCA battery \#149722 and Panasonic \#LCR1812 ■ Manufactured by Hiltchi ■ 12V, 1.9Ah - Used in Panasonic models \#NV8410, \#PV3100. \#PV3200, \#PV4510 and others
See pages 73-84 of Catalog \#19 for more VCR parts and accessories

Sharp Type Flyback

- Popular flyback for Sharp color TVs - Replaces Sharp \#RTRNF0009

For more flybacks see page 57 of Catalog \#19

M

TENMA"

Soldering Station

- Adjustable temperature range of $150^{\circ}-420^{\circ} \mathrm{C}$ $\left(300^{\circ}-790^{\circ} \mathrm{F}\right)$ = Grounded tip for soldering static sensitive devices a Overheat protection with closed loop temperature control a Replaceable iron clad tip Catalog \#19 contains other soldering equipment on pages 37-39

TENMA

Dual Trace 20 MHz Oscilloscope with Component Tester

This oscilloscope combines quality craftsmanship with ease and flexibility of operation. Specifications include $5 \mathrm{mV} /$ div. sensitivity and a frequency characteristic response with a smooth roll-off exceeding 20 MHz .
The component tester is a valuable troubleshooting tool that gives a visual display of the characteristics, value and condition of resistors, capacitors, Inductors and diodes; in or out of circuit. Catalog \#19

RS-232 Port Switches

Circuit Cooler

- Cools circuits instantly for rapid location of heat related problems a Will not leave residue

For more chemicals see pages

24-27 of Catalog \#19

Two-Way

 \#83-605For more port switches and computer equipment see pages 40-52

- Poly cone with polyfoam surround $=$ Display packaged - Made in USA \equiv Magnet weight: 60 oz. \quad Power handling: RMS/paak 100W/144W \& Frequency response: 20-3500Hz

For more speakers and accessories see pages 94-109 of Catalog \#19

PYLE

Subwoofer Crossover

- To be used with one dual voice coil subwoofer or two single voice coil woofers a Crossover frequencies: Rolls off at 100 Hz at 12 dB per octave $=40 \mathrm{hm}$ impedance - 150 watt RMS continuous - 220 watt peak $=4^{\prime \prime}[\mathrm{W}]$ $\times 7^{\prime \prime}$ (L) $\times 13 / /^{\prime \prime}$ (D)
\#50-220

Replacement Magnetron

- A quality replacement for many magnetrons on the market a Intended for use in microwaves of $600-700$ watts, 950 watts maximum
Catalog \#19 contains additional microwave oven parts on page 125

MCM is making waves

TENMA莫

Digital Function Generator/Frequency Counter
 \rrbracket A versatile function generator with a 10 MHz frequency counter, to be used either externally or to measure the output frequency of the generator a Produces square, sine, triangle, ramp and pulse waveforms \boldsymbol{n} Six digit frequency counter is switchable for interna or external use

For more specifications and test equipment see pages $8-23$ in
\#75-010

Mail-Order Electronics 24 HOUR ORDAR HOTLINE GUSTOMER SERIIGE (7AM-5PM PST) 415-592-8097
 415-592-8121

NEC V2O \& V30 CHIPS Replace the 8086 or 8088 in Your 1 BM PC and
increase lis Sppeed by up to 30% Price
Part No. UPD70108-5 (5MHz) V20 Chip. \$ 7.49
 UPD70108-10 ${ }^{(10 \mathrm{MHz}) \text { V } 20}$ Chip. UPD70116-8 (8MHz) V30 Chip.
UPD70116-10 (10MHz) v30 Chip. $\$ 12.95$
$\$ 9.95$ UPD70116-10 (10MHz) v30 Chip. . \$16.95

7400					
Part No.	1.9	$10+$	Part No.	1-9	
7400.	29	19	7485	69	
7402	29	19	7486.	45	
7404	29	19	7489	1.95	
7405.	35		7490.	49	
7406	39	29	7493	45	
7407.	39	29	74121.	39	
7408	35	25	74123	49	
7410.	29	19	74125	55	
7414	49	35	74126	. 55	
7416	35	25	74143.	4.95	
7417.	35	25	74150	135	
7420	29	19	74154.	1.35	
7430.	29	19	74158	1.49	
7432	39 39	29	${ }_{74174} 7417$	79 59	
7442	49	39	74175	59	
7445.	79	69	74176.	79	
7446.	89		74181.		
			74189		
7448.	1.95	1.85	74193	79	
7472.	39		74198.	. 85	
7473.	39		74221.	99	
7474	39		74273		
7475	49	39	74365.	59	

MICROPROCESSOR COMIPONENTS		
MISCELLLANEOUS CMIPS Part No. Price	$6500 / 6800 / 68000$ Cont. Part No. Price	8000 SERIES Cont. Part No.
D765AC. 3.95	6845. 275	$82281 .95$
WD9216......... 3.95	$68501 .1 .95$	8237-5........... 4.25
Z80, Z80A, Z80B SERIES	${ }_{6854}^{6852 ~} 75$	
z80. 1.19	MC68000 $88.18 . . .1 .199$	
z80-ctc. 129	MC680000.10. 11.95	${ }^{82514}$ (F.......... 1.69
z80-P10........... 129	MC68010110....... 49.95	${ }_{8253-5} \mathbf{2 5 1}1 .1 .95$
Z80A 1.29	MC6802008C128. 99.95	$8254 . \ldots3 .95$
Z80A.CTC. 1.65		8255A-5......... 2.95
ZBOA-DART 4.95	80318000 SERITES	8259-5............ 2.25
Z80A.P10._....... 1.89	8003	8272 395
Z80A-S10/0....... 3.95	8035149	8279-5. 2.95
Z80B. 2.75	8073. 6.9 .95	8741............ 9.95
z80B-CTC. 395	8080A 22.25	8742. 19.95
z808-P10......... 3.95	8085A 249	8748 (25V) 7.95
6500/6800/68000 SER.	${ }_{8086}^{8086}$........... 3.95	8748 H (1HOOS) (21V ...995
6502 .	${ }_{8087} 0008 \mathrm{MMHz}$) 99.95	
65C02(CMOS) 7.75	$88087-1(10 \mathrm{MHz}) . .229 .95$	
6520. 1.95	$88087-2(8 \mathrm{MHz}) \ldots 159.95$	8755 . 3.7120 .12$). .13495$
$65222 .295$	8088, 4.95	data acouisition
$65325 .49$	8088-2........... 6.95	C0804LCN $\quad 2.179$
$6551 . . .22 .295$	8116. 4.95	ADCO80BCCN 5.95
C802(CMOS)..... 15.95	8155	ADCO809CCN 3.69
6800. 1.95	8155	ADC1205CCJ-1 19.95
6802. 2.95	81	DACOSOBLCN 175
810. 1275	$82036 .695$	DAC1008LCN. 5.95
	82122229	50.

MICROPROCESSOR SALEI

Part No
 Part No

Torlduide • Since 1974 QUALIP COMPONENIS COMPGHIVE PRICING - PROMPT DEMMERY
 Dhanciketime association

COMPUTER PERIPHERALS
AMI 80386 Motherboards

Expandable to 2 MB (Zero-K incl.) of 32 -bit RAM with expansion board (included) - Expand an additional 8 MB using the JE3030 (below, Zero-K incl.) - XT footprint-AT compatible - $80387-16 / 20 \mathrm{ca}$ pability - Built-in set-up and diagnostics - Includes AMI BIOS ROMs - One-year warranty
JE3020 16MHz 80386 (AT) ... \$1399.95 JE3025 20MHz 80386 (AT) ... \$1699.95 JE3030 8MB (Zerd-k) Daughterboard... \$299.95

ST225 20 me Drive only (PC/XT/AT) $\$ 224.95$ ST225XT 20 MB w/Controller (PC/XT) $\mathbf{~ S 2 6 9 . 9 5}$ ST225AT 20M8 w/Controller (AT)........ $\$ 339.95$ ST238 30 me Dive only (PCCXT/AT). ST238XT 30M8 w/Controllor (PC/XT) ST238AT 30MB w/Controller (A)...... ST251XT 40 MB Drive only (PC//TT/AD ST251XT 40MB w/Cont. Card (PC/XT). $\begin{array}{ll}\text { ST251AT } & \text { 40MB w/Controller Card (AT). } \\ \text { ST251-1 } & \text { 40MB Fast } 28 \mathrm{~ms} \text { (Drive }\end{array}$ $\begin{array}{ll}\text { ST277 } & \text { 60MB Drive only (PC/XT/AT). } \\ \text { ST2 }\end{array}$ ST277XT 60 MB w/Controller (PC/XM). ST277AT 60MB w/Controller Card (AT). $\$ 249.95$ $\$ 299.95$
$\$ 389.95$ $\$ 389.95$
$\$ 429.95$ $\$ 429.95$
$\$ 469.95$ $\$ 469.95$
$\$ 539.95$ $\$ 469.95$
$\$ 539.95$
$\$ 499.95$ $\$ 499.95$
$\$ 499.95$ $\$ 499.95$
$\$ 449.95$
$\$ 5639.95$ T277AT 60 MB w/Controller Card (AT) . . . $\$ 639.95$

40MB Tape Back-Up for IBM PC/XT/AT

 DJ10 -40MB Back-Up and Tape . . . \$349.95 TB40 40MB Tape Cartridge. \$24.95Jameco 5.25" PC/XT
\& AT Compatible
Disk Drives JE1022 (Picturod)

JE1020 360 K Black Bzl. (PC/XT/A) . . . \$ 89.95 JE1021 з6ок Beige Bzl. (PC/XT/AT) . . . \$ 89.95 JE1022 1.2 мв Beige BzI. (PC/xt/AT) . . \$109.95 3.5" PC/XT/AT Compatible Disk Drives

Datatronics

2400/1200/300 Modems NEW, Pocket Version! - Hayes command compatible - Bell $103 / 212 \mathrm{~A}$ com-
patible. Auto-dial/autopatible. Auto-dial/auto-
answer. FCC aporoved answer - FCC approved
1 -year warranty - Includes 1-year warranty - Includes
MaxiMite Communication MaxiMite Communication
Sotware (except 1200P)
 Software (except 1200P)
1200P 1200/300 Baud Pocket Modem
1200 H 1200/300 Baud Internal Modem.
2400S 2400/1200/300 Internal Modem. 1200C 1200/300 Baud External Modem.

S 99.95 $1200 / 300$ Raud External Modem. . . . \$129.95
U.S. Funds Only
Shipping: Add 5% plus $\$ 1.50$ Insurance
(May vary according to weight)
California Residents:
Add $6 \%, 61 / 2 \%$ or 7%
Sales Tax

What's New at

 AMERICAN DESIGN COMPONENTS?M e warehouse 60,000 items at American Design Componentsexpensive, often hard-to-find components for sale at a fraction of their original costl
You'll find every part you need either brand new or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find exactly what you need from the thousands of items on display. OPEN MON.-SAT., 9-5

THERE'S NO RISK!

With our 90-day warranty. any purchase can be returned for any reason for full credit or refund

COMMODORE

PLUS 4 COMPUTER...

Built-in software includes a word processor spread sheet, graphics, \& filing system. Comes complete with power supply and instruction manual.
(Customer Returns - Tested Goodl) Item \#19202 \$49.95

EXTERNAL DISK DRIVE

 CHASSISWith 60W
power supply
Can accommodate any of the following:
2 full-ht. drivesADC Item \#7928 2 floppy drives $10005 / 1717$ 2 floppy drives .. 19704 \& 1 floppy ... 10005 Input: $115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Orig. for Burroughs computer. Dim.: $11^{1 "} \mathrm{~W} \times \mathbf{8}^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{D}$

51/4" FULL-HEIGHT HARD DISK DRIVES

40 Mb
(AT/XT

Compat.)

High speed, 40

tem \#17765 New - \$379.00 10Mb (ST412 Compat.) Major manufacturers Get them while they last!
Item \#17199 \$99.00 ea. 115 CFM MUFFIN®. TYPE
FANS
$115 \mathrm{VAC} ; 60 \mathrm{~Hz}$. 21W.; 28A.; 3100 RPM; 5-blade model: aluminum housing. Can be mtd aluminum housing. Can
for blowing or exhaust. Dimen.: $4^{11 / 16^{\prime \prime}} \mathrm{sq} . \times 11 / 2^{\prime \prime} \mathrm{D}$. Mfr: Howard Industries or equiv.

Item \#1864 New - \$9.95 W/Adjustable Speed Control tem 200611 \$12.95

51/4" HALF-HT. 10Mb

 HARD DISK DRIVES
10Mb

(IBMP ${ }^{\text {P }}$ Compatible

Mfr - NEC \#D5124 Item \#19704 New -\$99.00 20Mb (ST225 Compatible) Mfr - Olivetti \#EM5520/2 Tested-Like New! Item \#20060 New - $\$ 159.00$ 27VDC MINI FAN. (12VDC)

12VDC; ;20A.; brushless fan

 motor. Can be mtd. for cooling or exhaust. 5 plastic blades; aluminum housing. Dim.: $31 / 3^{\prime \prime}$ sq $\times 11 /{ }^{\text {" }}$ deep. , Mfr - FlowMax \#3115PL-04W-B30-90Item \#16540 Now - \$12.95

STEPPING MOTORS

 for ROBOTICS.. Precision steppers withincrements from 1 to 7.5°.
Speeds up to 5,000 steps. Speods up to 5,000 steps.
Fig. 1 Fig. 2

48 TPI, 40 Track
Double Side/Double Density Tandon \#TM100-2 or equiv.

Item \#7928 \$79.00 New 2 for $\$ 150.00$ Now
MAGNIFYING

LAMP

Multi-position, 30", completely adjustable metal C-clamp. Has 4" meta -clamp. Has $4^{\prime \prime}$ diopter
magnifying lens, w/ruler. Porce lain lamp socket $\&$ on/off switch uses up to a 60 W bulb. Color: beige. UL listed.

1 Mb (unformatted), $135 \mathrm{TPI}, 3 \mathrm{~ms}$. access time. Power requirements: $+12,+5$ volts. Removed
from operational computers from operational computers Mfr - NEC, model FD1035 Item \#17171 \$79.00 ea. 2 for $\$ 150.00$

NICAD BATTERY

 PACKS (Rechargeable) "AA" Cells 12 V 450 maContains 10 " AA^{2} " cells, connected in series. Recharge rate: 45 ma ., $16-18 \mathrm{hrs}$. Case w/tab output connex.
Dim.: $21 / 16^{* \prime} \times 21 / 4^{\prime \prime} \times 215 / 16^{\prime \prime}$
$\mathrm{Mfr}-\mathrm{GE} \# 123233$ Item \#5443 \$5.95 RFE "Sub C"

Cells

12V
1.2Ah.

Consists of 10 "Sub C" cells. Connected in series. Case w/tab output connex. Recharge rate: 100 ma . for $14-16 \mathrm{hrs}$. Dim.: $41 / 2^{\prime \prime} \times 13 / 4^{\prime \prime} \times$
Mfr $-\mathrm{GE}^{\prime \prime}$ or equiv. Mir - GE or equiv.
Item \#19677 $\$ 9.95$ RFE "C" Cells

1.25Ah.

Consists of $6^{\circ} \mathrm{C}$ " cells. Connected in series. Recharge rate: $80-100$ ma. for 16 hrs . Dim.: $6^{\prime \prime} \times 17 / 8$
$\times 1^{\prime \prime}$.Major Mfrs.

DISK DRIVES - MONITORS - COMPUTER COMPONENTS - INTEGRATED CIRCUITS - CAPACITORS POWER SUPPLIES - VOLTAGE REGULATORS - OPTO ELECTRONICS - SEMICONDUCTORS

THERMAL PRINTER
Dot Matrix-120 CPS

Print speed: 120 CPS; paper width: $81 /{ }^{\text {" }}$ $80 / 132$ columns/line. With RS-232 IBM serial interface. Operates on $115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Hewlett Packard \#HP2671A

Item \#19705 \$79.00
(Removed from working systemsl)

NEON TRANSFORMER

 (Hi -Voltage)7300 VAC @ 5 Ma . May be used for powering neon lights, re-
placing oil burner ignition transformer, building Jacob's ladder (spark gap). Hi-voltage output: $1 / /$ quick connect terminal \& case ground input fully enclosed metal case.
Wt .12 lb . Base $\mathrm{mt} .: 41 / 2^{*} \mathrm{H} \times 5^{1 / 4} \mathrm{~W} \times 6^{7} / \mathrm{s}$ Item \#151 New - \$14.95

ADAM COMPUTER SWITCHING

ACCESSORIES...
CASSETTE DIGITAL

DATA DRIVE...

Serial format. Search 80IPS, Read Write 201PS. 12V motor: 5 V logic; - 29 -pin connector cables. Orig. designed for the Adam. Dimen.:
$5^{*} \mathrm{~W} \times 3^{3 / 4^{"}} \mathrm{H} \times 4^{*} \mathrm{D}$. W $\times 3^{3 / 4} 4^{\prime H} \mathrm{H} \times 4^{4} \mathrm{D}$.
Item \#6641 Now - \$19.95
PRINTER POWER SUPPLY... DC Output: -5 V @ 200ma; +5 V @ $3 A_{i}+12 \mathrm{~V} @ 2.9 \mathrm{~A} ;+18 \mathrm{~V}$ @ 1 A . Item \#6642 \$14.95 ASCII KEYBOARD
75-Key, 8-Bit, Serial Output 21 user-defined keys; 7 -pin modular connection. Dimen.: $15^{\prime \prime} \mathrm{W} \times$ $2 \frac{1}{2} 2^{4} \mathrm{H} \times 6^{1 / 2}{ }^{2}$ " .

Item \#6643 Now - $\$ 19.95$ ADAM/COLECOVISION GAME CONTROLLERS. Can also be used w/Ataril Can also be
Set of $4 . .$.

Item \#7013 Now - $\$ 9.95$

ADAM CASSETTES..

 Incl. Smart Basic, Buck Rogers \& blank cassette. Item \#7786Bakor's Dozen New - \$19.95

＂The First Source＂－for electromechanical \＆electronic equipment and components－AMERICAN DESIGN COMPONENTS！

12＂EGA COLOR MONITOR 25 KHz － High Res．

IBM PC
Monochrome IBM PC Color ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Item $\$ 19216$ AT\＆T Monochrome． APPLE Macintosh \qquad COMPAQ Portable．．．．．．．．．．．．．．．．．．tem $\# 119225$ New－\＄8．95 ea．； 2 for $\$ 15.00$
TTL MONITORS．．
Open
Frame）
－12VDC

Green phosphor．Schematic incl． Motorola \＃MD2003－190

Item \＃17198 New－\＄19．95 $12^{\prime \prime}-28 V D C$ ，green phosphor．Sub－ assemblies，CRT，board \＆transformer incl． Comes w／hook－up diagram．

Item \＃6811 New－\＄19．95
$9^{\prime \prime}$ COMPOSITE MONITOR． Black \＆White

Input：115VAC． Mounted in metal chassis． Mfr－Motorola \＃XM226－2

Item \＃19694 New－\＄22．95

Output：12VAC，54VA Input： $120 \mathrm{VAC} / 60 \mathrm{~Hz}$ ．， 60 Amps ． With 7^{\prime}＇power jack \＆ 6^{\prime} long AC plug．UL approved．Dimen－ sions： $3^{* \prime} \mathrm{H} \times 41 /{ }^{*}$＂W $\times 3^{\prime \prime}$ deep． Mfr－Ault \＃374－5412－0003

Item \＃19785 \＄7．95 ea． RECORDING TAPE $71 /{ }^{\prime \prime}$ Reel， 2400 ft ．

We carry a complete line of Computer
\＆Game Accessories and Equipment．
PC／XT／AT Compatible ENHANCED LAYOUT 101－KEY KEYBOARD

\star Membrane
$\star 12$ Function Keys
\star Separate Numerical Cursor
\star LED indicators for Scroll，Caps and
＊ 1 ＂inclination Foot Stand
Manufacturer \＃29079 Item \＃19680 New－\＄49．95

DYNAMIC MEMORY BOARD

SMART WATCH DS1216

INTEGRATED CIRCUITS． Item

DC Output： 9.5 V ＠ 1 A ．

Input： 115 VAC ．， $50 / 60 \mathrm{~Hz}$ ．
Commodore $\# 251539-01 / 02$（black）
 CRYSTALS．．． （MC－18U）

MHz．\quadItem No．	MHz．htem No．
1．8432．．．．．． 7915	10.738635 ．．．． 1953
3.579545 .12361	12．0．．．．．．．．．．． 7920
3．6864．．．．． 13501	14．31818．．．．．． 7359
4．0．．．．．．．．．．． 7045	16．0．．．．．．．．．．． 13425
4．32．．．．．．．． 13041	18．0．．．．．．．．．． 13617
4．9152．．．． 13666	18．432．．．．．．． 19332
5．0．．．．．．．．． 13043	19．6508．．．．．． 12112
5．0688．．．．．． 6786	20．0．．．．．．．．．．． 12360
6．0．．．．．．．．． 12362	24．0．．．．．．．．．． 14117
6．144．．．．．． 13226	32．768．．．．．．． 13911
7．3728．．．． 13502	48．0．．．．．．．．．．．． 7389
8．0．．．．．．．．．．． 1957	64．0．．．．．．．．．． 20093
10．0．．．．．．．．．． 17727	122．686．．．．．．．． 7037

OSCILLATORS．．

Item MHz No.	Item MHz. No.
1．0．．．．．．．．．． 10268	11．0．．．．．．．．．． 10267
2．0．．．．．．．．．．． 7980	15．360．．．．．．． 10264
2．4．．．．．．．．．． 15478	16．0．．．．．．．．．．． 8158
4．0．．．．．．．． 17020	17．6．．．．．．．．．． 16425
4．808．．．．．． 12118	18．432．．．．．．． 13227
4．9152．．．．．． 9419	20．0．．．．．．．．．． 17262
5．0．．．．．．．． 10265 $6.0 \ldots \ldots . .12113$	20．43468＿．．． 12117
7．0．．．．．．．．．．． 12406	22.29127357
7．3728．．．． 10181	24．0．．．．．．．．．．． 18005
8．0．．．．．．．．．． 13038	28．0．．．．．．．．．． 18262
9．0．．．．．．．．．． 13228	30．0．．．．．．．．．．． 12407
9．6．．．．．．．．．． 16421	51．2 ．．．．．．．．． 10178
10．0．．．．．．．．．． 12408	64．0．．．．．．．．．．． 17238

AMERICAN DESIGN COMPONENTS， 815 FAIRVIEW AVE．，P．O．BOX 220, FAIRVIEW，N．J． 07022 MINIMUM

－STATIC RAMS－				2，048 $\times 8$	\＄4．00
TMM2016－100	2，048×8	\＄4．00	6116－3		
2101－45	256×4	1.75	6116－4	2，048×8	3.50
2102L－2	256×4	． 99	6116LP－2	2，048 $\times 8$	4.50
2114－150	$1,024 \times 4$	1.25	6116LP－4	$2,048 \times 8$	4.00
$2114-200$	$1,024 \times 4$	． 95	6264LP－12	8，192 $\times 8$	10.50
2114L－2	$1,024 \times 4$	1.00	6264LP－15	$8,192 \times 8$	10.25
2148－55	$1,024 \times 4$	3.49	6264LP－20	$8,192 \times 8$	10.25 9.75
2149 $2167 S-55$	$1,024 \times 4$ 16384×1	2.49 2.00	62256LP－12	$8,792 \times 8$ $32,768 \times 8$	9.75
2167S－55 MK4027N－4	$16,384 \times 1$ $4,096 \times 1$	2.00 2.00	62256LP－15	$32,768 \times 8$	19.95
5101	256×4	4.95	6514	1，024 $\times 4$	3.50
	－DYNAMIC RAMS－				
4116－150	16，384×1	\＄ 1.55	4164－250	65，536 $\times 1$	\＄ 1.25
4116－200	16，384×1	． 69	4416－120	16，384 $\times 4$	10.00
16－250	$16,384 \times 1$	． 49	4416－150	16，384 $\times 4$	9.00
256	262，144 $\times 1$	15.00	4464－15	65，536 $\times 4$	18.95
41464	64，536 $\times 4$	18.95	511000P－10	$1,048,576 \times 1$	39.95
4164－15	65，536 $\times 1$	1.95	514256	$262,144 \times 4$	69.95
4165－200	65，536 $\times 1$	1.50	6665	$65,536 \times 1$	1.50
		－EPROMS－			
TMS2516	2，048 $\times 8$	\＄3．75	2764－45	$8,192 \times 8$	\＄ 2.95
TMS2532	$4,096 \times 8$	5.95	$27 C 64$	$8,192 \times 8$	6.49
TMS2564	8，192 $\times 8$	4.25	27128－25	16，384 $\times 8$	5.95
2708	$1,024 \times 8$	4.50	27C128－25	$16,384 \times 8$	6.95
27.08	$1,024 \times 8$	7.50	27128－30	$16,384 \times 8$	5.45
2716	2，048 $\times 8$	3.75	27256－25	$32,768 \times 8$	5.95
${ }^{27 \mathrm{C} 16}$	$2,048 \times 8$	5.49	27C256－25		
2732	$4,096 \times 8$	3.95	27C256－25	32，768 68	7.95
$27 \mathrm{C32}$	$4,096 \times 8$	5.95	27512－25	$65,536 \times 8$	11.75
2732－35	$4,096 \times 8$	4.45	27C512	65，536 $\times 8$	14.95
2764－20	8，192 $\times 8$	4.25	68764	8，192 $\times 8$	15.95
2764－25	8，192 $\times 8$	3.75	68776	$8,192 \times 8$	15.95
	－VOLTAGE REGULATORS－				
7805T．	．．．\＄． 49	7905T．	．．．\＄． 49	7920T．．．	\＄． 49
7806T．	－．．． 49	7906T．	．．．．．． 49	7805K．．	．．． 1.59
7808T．	．．．．． 49			7812 K ．	．．． 1.59
7812T．	－．．． 49			7905K．	． 1.59
7815T．	－．．． 49	7912 ．．	－．．．． 49	7912 K ．	． 1.59
7818T．．．．．	．．．．．． 49	7915 T.	．．．．．．． 49	LM323K．	4.50
7820T．．．．．．．．．．．	－．．．．．． 49	7918T．．．．．．	－．．．．．．．．． 49	LM338K．．．	．．． 3.95

Please call or write

with any other requirements！
 YES！Please send me the following items－

ltem No．	How Many？	Description	Price	Total
$\begin{gathered} \text { rall' } 88 \\ \text { with eve } \end{gathered}$	talog order！	ing \＆handling： specified．Add Sales Tax ples		

For all phone orders，call TOLL FREE 800－524－0809．In New Jersey call（201）941－5000．

America's Communications Leader Presents Its All-New 10-Meter SSB/CW Mobile Transceiver

Realistic, America's premier brand of scanners, CB radios and satellite TV systems introduces the HTX-100, the perfect first rig for a beginning Ham and a superb 10meter mobile radio for any amateur. It's compact, yet loaded with "big rig" features.
Pushbutton Memory Tuning
An easy-to-program memory stores 10 favorite frequencies and

Ultracompact and includes everything you need for underdash installation
mike-mounted pushbuttons permit safe and easy up/down frequency selection while you drive. A frontpanel lock control prevents accidental frequency changes. You can fine-tune reception with the ± 1.5 kHz RIT control. Coverage is 28.0 to 29.6999 MHz , USB or CW. Convenient semi break-in keying and CW sidetone are built in.

Selectable Power Output

You can select 25 -watt or 5 -watt QRP power output from the front panel. The HTX-100 has a backlit LCD frequency display with mode and tuning-step indicators. You also get a 5-step LED signal/RF power meter, noise blanker, hefty 3-watt audio output, high-quality built-in
speaker, front-panel headphone jack and a rear-panel jack for adding an external speaker.

Join the Action on "10"

With improving band conditions and new Novice voice and digital privileges, the 10 -meter fun is just beginning. Be a part of it with this affordable, top-quality transceiver! Only $\$ 259.95$ and in stock today at our store near you.

Exclusively at

RadIO Shack The Technology Store ${ }^{\text {m/ }}$

A DIVISION OF TANDY CORPORATION

Price applies at participating Radio Shack stores and dealers

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

ON SUB-MINIATURE VOICE FM TRANSMITTERS.
KITS CONTAIN PC BOARDS

*FMX-1 LONG RANGE (3 MI) ULTRA SENSITIVE FM VOICE XMTR with fine tune, range control plus.. $\$ 24.50$

-TELX-1 TELEPHONE FM XMTR (3 MI) automatically operates when phone is used. Crystal clear clarity with fine tune and range control. Non detectable.. $\$ 24.50$

*ATR-1 AUTOMATIC TELEPHONE RECORDING DEVICE tapes telephone conversation all automatically... $\$ 19.50$ ALL THREE OF ABOVE FOR.................. $\$ 49.50$ CALL OR SEND VISA, MASTER CHARGE, MONEY ORDER, ETC. TO AMAZING CONCEPTS, BOX 716, AMHERST, NH 03031. (603) 673-4730.

CABLE TV DESCRAMBLERS

1-\$89.00 10-\$69.00 100-Call Last channel recall-Favorite channel select75 channel-Channel scan-Manual fine tune-

Find The Defective Capacitors, Coils, Resistors, SCRs And Triacs That All Other Testers Miss...

Presenting a new, improved, dynamic and mistake proof LC Analyzer that finds defective components all other testers miss.

- Dynamically tests capacitors for value from 1 pF to 20 F , leakage with up to 1000 volts applied, dielectric absorption and equivalent series resistance (ESR).
- Dynamically tests inductors, in-or-out of circuit, from 1 uH to 20 Henrys for opens, shorts, value, and detect even one shorted turn.
- Dynamically test SCRs, Triacs, High Value Resistors, and locates the distance to within feet of an open or short in a transmission line for an added bonus.
- Automatically makes all of the tests, compares them to EIA (Electronic Industries Association) standards and reads the results as Good or Bad. Enter all information right from the component without look-up charts, calculations, or errors.
- Extends your testing capability to places where an AC cord won't reach, with rechargeable 9 hour battery or AC operations.
- An added feature alerts you that the fuse has opened, and that there may be residual high voltage on the component under test.

SIPRRUALITN

BRK 40 MHZ
OSCILLOSCOPE
SAVE $\$ 250$: with internal graticule and scale illumination Video sync separator - Single sweep $\quad X-Y$ operation

- Z axis output $\mathbf{C} V$ mode displays

2 unrelated frequency signals

- Two 10: 1 direct probes

Reg. $\$ 848.00$
$\left.\begin{array}{c}\text { Our } \\ \text { Price } \\ \text { Mooe 1544A }\end{array}\right\}$

[^0]: As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.
 RADIO-ELECTRONICS, (ISSN 0033-7862) February 1989. Published monthly by Gernsback Publications, Inc., 500 -B Bi-County Boulevard, Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions $\$ 17.97$, Canada $\$ 23.97$, all other countries $\$ 26.97$. All subscription orders payable in U.S.A. funds only, via international postal money order or check drawn on a U.S.A. bank. Single copies $\$ 2.25$. © 1988 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

 POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115, Boulder, CO 80321-5115.

 A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^1]: United States Instrument Rentals, Inc. (J) A U.S Leasing Company

 800-USIR-123 (800-874-7123)

[^2]: MONITOR room and/or telephone conversation. Range unlimited. $\$ 88.00$. Catalog, $\$ 3.00$. LISTEN 603 Elgin, Muskogee, OK 74401. 1' (800) 633-8277. T.V. Tunable notch filters. Free Brochure. D.K. VIDEO, Box 63/6025, Margate, FL 33063 . 1 (305) 752-9202.
 OPENING Special. Super Duper Kits. Send $\$ 1.00$ U.S. $\$$ for booklet to 3C TECHNOLOGY Box 306, S. Lafleche, St. Hubert, Quebec, J4T-3J6.
 OEM QUALITY AUDIO TUBES, wholesale prices, dealers invited. Restoration supplies, tubes, capacitors, resistors, sockets, needles, cartridges, for tube equipment. Catalog \$1. TRIODE ELECTRONICS, 2010 W. Roscoe, Chicago, IL. (312) 871-7459. FAX (312) 871-7938.

